
 

Abstract –Sampling process is an important quality control method for a lot of manufacturing companies, especially when 

the quality of the products is critical to their success. However, defining a sampling plan for a process that does not follow 

an independent and identically random distribution as the normal distribution can be challenging. In the industrial case 

presented in this article, we are indeed facing such a problem, which makes traditional sampling methods unusable. 

Nevertheless, one can use a digital twin based on real algorithms used in the process to analyze possible sampling plans. 

This article presents a novel data-driven approach to simulate the outcomes of applying possible sampling plans in the 

context of a high-precision metallic parts machining when facing non-normally distributed and correlated data. Based on 

historical production data, this approach is used to explore what-if scenarios, allowing sampling plans improvement and 

better process knowledge. In the wake of the Industry 4.0 movement, data-driven digital twins are the first stepping stone 

towards more intelligent and adaptive models. 

 

Résumé – Les processus d’échantillonnage sont une méthode de contrôle qualité très importante pour beaucoup 

d’entreprises manufacturières, particulièrement lorsque la qualité des produits est critique pour leur réussite. Par contre, 

la définition de plans d’échantillonnage peut s’avérer ardue lorsque nous faisons face à un procédé non identiquement et 

indépendamment distribué de façon aléatoire. Dans le cas d’étude industriel présenté dans cet article, nous faisons face à 

cette situation, rendant les méthodes d’échantillonnage traditionnelles inutilisables. Cependant, il est possible d’utiliser un 

jumeau numérique basé sur les algorithmes réels utilisés dans le procédé pour analyser des plans d’échantillonnage 

potentiels. Cet article présente une approche basée sur les données qui permet de simuler l’application d’un plan 

d’échantillonnage dans un contexte d’usinage de pièces métalliques de haute précision. L’approche utilise des données 

historiques de production (non normalement distribuées ni indépendantes) pour explorer des scénarios d’hypothèse, 

permettant une amélioration des plans d’échantillonnage et une meilleure connaissance du procédé. Dans une époque où 

l’Industrie 4.0 prend de plus en plus d’importance, la conception d’un tel jumeau numérique basé sur les données est la 

pierre angulaire afin d’obtenir des modèles intelligents et adaptatifs. 

 

Mots clés – Échantillonnage, simulation de procédé, jumeau numérique, procédé d’usinage, Industrie 4.0 

Keywords – Sampling, process simulation, digital twin, machining process, Industry 4.0 

 
1 INTRODUCTION 

The manufacturing sector faces many challenges regarding 

quality control processes, which are responsible for a 

significant part of the production costs, in addition to being 

critical for legislative aspects [Schiffauerova and Thomson, 

2006]. For a lot of businesses in the manufacturing sector, the 

inspection of all produced parts would represent considerable 

and costly efforts, which also requires an important time. In 

those cases, sampling methods are used to select a certain 

quantity of products for quality control purposes. 

 

More precisely, the sampling rate is what will drive the level 

of effort to control the quality of the product manufactured. In 

the past decades, a lot of research efforts have been made in 

studying different methods of sampling products amongst 

production lot [Dauzère-Pérès and al., 2010; Dodge and 

Romig, 1929; Fallah Nezhad and Nesaee, 2021; Kogan and 
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Raz, 2002; Lieberman and Resnikoff, 1955; Negrin and al., 

2011; Nesaee and Nezhad, 2021; Pearn and Wu, 2006; Yu and 

al., 2012]. Historically, those methods were designed to be 

static, meaning that they were assuming a normal and 

independent distribution of the quality features that were 

inspected, either they had a known or unknown standard 

deviation (see [Lieberman and Resnikoff ,1955]).  

 

For processes that do not follow traditional rules of statistics as 

the normal distribution, the application of standard sampling 

methods can become problematic and incoherent as the 

assumption of normality can sometimes cause discrepancies in 

the rejection percentage when sampling lots of parts with the 

methods (see Das and Mitra [1964]).  

 

As an example, for a milling plant, each time a part is 

measured some adjustments are made to the manufacturing 

process (e.g. adjusting the position of a tool in a CNC machine 

to compensate for tool wear). Therefore, normal distribution 

and/or independent distribution hypotheses are not met. 

 

We propose using a digital twin in such contexts. The digital 

twin must integrate (1) the real algorithms used by the 

company to adjust production parameters after a part is 

measured; (2) empirical data from past production runs, and 

(3) the ability to determine how changing those production 

parameters impacts future parts measurement. Using this, we 

can evaluate how changing the sampling plan impacts 

production quality.  

 

Moreover, the approach allows the process owners to have a 

better understanding and a better managerial insight of the 

sampling process, i.e. how the process affects the overall 

quality but also the resources and equipment utilization. This 

approach is then applied to an industrial case, more precisely 

on a high-precision metal part sampling process.  

 

The remaining of this article is organized as follows. To have a 

better sense of the limits of traditional sampling methods 

applied to manufacturing processes, a literature review is 

conducted (Section 2). Then, a description of the actual 

sampling process of the company, as well as on the availability 

of historical production data is presented (Section 3). This 

leads to the digital twin and simulation approach which can be 

used to make what-if scenarios based on theoretical sampling 

plans (Section 4). Finally, a conclusion on the next phases of 

this project will be found in Section 5. 

2 LITERATURE REVIEW ON SAMPLING METHODS 

The method used to conduct the review on sampling methods 

was based on the hermeneutic circle developed by Boell and 

Cecez-Kecmanovic [2010]. The keywords used to conduct 

searches in the Web of Science database [Analytics, 2020] 

were mainly sampling, lot sampling and also computer 

experiments, while the search was refined each time by 

exploring the cited works, as defined in the hermeneutic circle 

method.  

 

One of the first to study which looked at sampling methods for 

an industrial process was from Dodge and Romig [1929]. In 

this research, Dodge and Romig introduced for the first time 

the concept of consumer’s and producer’s risks, which are 

largely used in today’s methods to determine the lot inspection 

rate. A few years later, Lieberman and Resnikoff [1955] 

defined what is today considered the basis for quality control 

based on the sampling of a population. The authors thus 

defined methods to determine the sampling rate based on the 

standard deviation, whether it is known or not among the 

population, and based on the mean range of the values 

inspected.  

 

In 1964, Das and Mitra [1964] studied the effect of non-

normality on acceptance sampling plan, which is usually based 

on normal distributions. Thus, the authors studied the effect of 

these assumptions on lot rejection and acceptance probabilities 

with respect to consumer’s and producer’s risks. In their 

conclusions, the authors pointed out that making normality 

assumptions with non-normal distributions can cause 

significant distortions in rejection and acceptance rate, 

particularly for plans that require large sample sizes and when 

the specifications for inspection are very strict (which is the 

case for high-precision machining). 

 

Kogan and Raz [2002] addressed the problem of defect 

detection and inspection intensity in a general context of 

project management. The authors used historical data to model 

the defect arrival rate for each phase of the project, the defect 

detection rate as a function of the inspection efforts and all the 

costs related to the remaining defects and to these inspection 

efforts. Using traditional integral calculus, the authors defined 

the optimal inspection intensities for each type of defects and 

each phase of the project. As the computational resources 

increased over the years, so did the complexity of the models 

developed in this field of expertise. Lee [2002] used a self-

organizing map (SOM), which is a specific method from the 

supervised machine learning techniques, to determine the 

optimal inspection locations to maximize the defect detection 

rate. In their work on the “wafers at risk” (“W@R”), Dauzère-

Pérès and al. [2010] used simulations to model a wafer 

manufacturing process where a theoretical set of wafers are 

inspected and the simulated number of wafers at risk is 

measured. To find the optimal set of wafers to inspect, the 

authors simulated the W@R for all permutations. However, 

one could say that this approach can only work if the 

simulation model is not too much time-consuming. Pearn and 

Wu [2006] used the Taguchi process capability index (Cpm) to 

design a sampling method that considers the producer risks as 

well as the consumer risks. According to the authors, the 

Taguchi capability index emphasizes measuring how well a 

process can cluster a certain variable around a defined target. 

Similarly, Negrin and al. [2011] explored the possibility of 

using a process performance indicator, the process capability 

index (Cpk), to develop a multi-level method of sampling 

products for inspection. In addition to the Cpk, the authors 

used the coefficient of determination (R2) to evaluate what 

they call “the gain due to expectation”; the more to process is 

stable, the more they can predict the process outcome, and the 

less they need to inspect their products. Fallah Nezhad and 

Nesaee [2021], as for them, reviewed and studied the use of 

EWMA statistics (exponentially weighted moving average) in 

sampling methods. More precisely, the authors developed a 

double sampling plan based on the EWMA of previous lots 

sampling but also on the producer’s and consumer’s risks 

level. The authors demonstrated that their method allows to 

decrease the average sample number comparatively to a single 

sampling plan based on the same EWMA. 

 

From what was discussed in this section, we can conclude that 

there is space for more research in the area of product 

sampling for a complex manufacturing process. Indeed, from 



what we know so far, the manufacturing sector is still largely 

using traditional and conventional sampling methods as 

defined in standards like the well-known MLT-STD-105E 

[USA, 1989] or the ASTM’s standard [International, 2018]. 

The former standard defines basic sampling methods based on 

various parameters like the AQL (acceptable quality level) and 

the inspection severity, as well as some useful tools for 

conducting inspections. As for the latter, the ASTM standard 

on sampling, it presents basic sampling methods based on 

probabilities and inspection guidelines based on internationally 

recognized inspection principles. 

 

Yu and al. [2012] studied the use of active learning schemes 

proposed by MacKay [1992] and Cohn [1993] in order to 

measure the reduction in the predictive variance over a 

particular design space and choose the points that maximize 

this reduction of variance. More precisely, their work aims to 

improve the way computer simulation of design points are 

done and how these design points are selected, allowing 

parallel computing in a very large design space. As an 

example, for a possible use of their method, the authors 

mentioned the processor manufacturing industry, where the 

processors design space is often composed of many design 

points. On that note, it appears that the study of the use of 

multilevel control plans are rather scarce, and even more for 

the use of dynamic control. Considering a variable process, 

one can suppose that an adaptive method to define control and 

inspection plan would increase the overall quality and the 

overall inspection cost of a manufacturing process, as observed 

in Negrin and al. [2011], Nesaee and Nezhad [2021] and Pearn 

and Wu [2006]. Furthermore, the use of multilevel or dynamic 

control plans, from what we can see in the literature, considers 

the quality assurance perspective but not so much in the 

process control aspects, for instance in the case of a process 

using a sampling process as a feedback loop. When facing a 

process where a systematic quality control process does not 

appear to be viable nor desirable, we can stipulate that the 

design of the sampling plan is critical to many aspects of the 

process performance: the lead time of the machined lot, the 

average quality of the parts, the defect detection rate, and 

many more.  

 

The subject of sampling in the context of Industry 4.0 has not 

been extensively discussed in the literature. However, some 

authors have nonetheless studied the question. In their work on 

sampling strategies for surfaces of machined parts, Moroni and 

Petrò [2018] define three types of sampling methodology; 

blind, manufactured-based and adaptive sampling strategies. 

Blind sampling strategies are based on theoretical information 

and could be considered as Industry 3.0 sampling strategies. 

The use of adaptive sampling strategies is the kind of strategies 

one would see in an Industry 4.0 manufacturing process, still 

based on theoretical information. The manufactured-based 

sampling strategies are data-driven but require models of the 

process investigated, which can be a very challenging task. It 

is relevant to mention that surface sampling is quite different 

from lot and feature sampling but share nonetheless some 

similarities for data points selection. 

 

On that note, some authors mentioned the importance of 

having adaptive decision-making models in the context of 

intelligent manufacturing [Zhong and al. , 2017]. Kagermann 

and al. [2013] underlined the importance of having models for 

managing complex systems. These models would fulfill two 

distinct roles, namely planning operations and explaining 

systems (planning models and explanatory models as 

mentioned by the authors). 

 

To get a sense of the evolution of the sampling methods over 

the last decades, Table 1 presents a brief summary of the 

different works discussed until now.  

3 INDUSTRIAL CASE STUDY AND DATA 

The case study investigated at APN Global is related to the 

machining industry, more precisely the turning process for the 

manufacturing of high-precision metallic parts used in the 

assembling of aircraft engines and gas chromatographic 

analysis devices. These parts can have up to about 70 features 

that need to be checked to make sure to have a valid part that 

meets the standards. These features consist of part dimensions, 

holes depth, diameters and circumference, angles, holes 

positioning, as well as other positioning features. APN Global 

has instigated a digital transformation a few years ago, which 

at some point allowed the company to improve its data 

gathering concerning different parts of the manufacturing 

process. 

3.1 Sampling plan 

The rate of inspection is not the same depending on the 

feature. For instance, a feature which is known by experts to be 

highly variable and unstable could be inspected more often 

than others. There exist different inspection methods: (1) 

conventional optical comparator, (2) numerical and automated 

optical comparator, (3) manual using gauge pins, precision 

calipers and other traditional metrological tools. For each 

feature of a particular part, the sampling plan dictates when to 

inspect a particular part, which features, and which inspection 

method to use.  

 

Defining the optimal sampling plan is not straightforward. 

Although quality is important, we cannot afford to measure 

everything. The optimal sampling plan is the one that prevents 

parts to fall out of specifications, but with the least possible 

costs. Indeed, the costs generated by the inspection process are 

important. Except when the measurement is taken manually or 

with an optical comparator, a part that needs to be measured 

has to be moved, manually or with the help of an automated 

guided vehicle (AGV), to the inspection equipment (CMM). 

With the addition of the corresponding inspection time, the 

delay between the end of a part machining and its inspection is 

variable so the inspection process can be a bottleneck. At the 

moment, the sampling plan is defined by quality assurance 

experts who need to analyze previous manufactured batches 

manually in order to define an appropriate sampling rate for 

every feature of a particular part. For that reason, using a 

digital twin to study the effects of changing the sampling rates 

can be beneficial from a quality control perspective. 

3.2 Offsets/corrections 

Over time, a drift in part measurements may appears (e.g. 

because of tool wear) so corrections are applied to stabilize the 

process and keep the parts compliant. These corrections are 

also called offsets and they are represented as 4-axis temporary 

displacements (x, y, z or r1) of the tools used.  

 

                                                 
1 Expresses a radius. 



However, there exists some relationships between two or more 

features. When a specific tool affects two or more features of a 

manufactured part, the corrections applied to this tool to 

correct a feature may affect others too. In the following 

example (Figure 1), which represents a cross section of a 

fictional metal part, a change in the feature A will have an 

immediate impact on the feature B, and so will be the tool 

corrections generated during each lot manufactured.   

More precisely, if the measurement of feature B decreases, 

feature A will automatically increase, as the two features are 

linked. Knowing the relations between all the features, one can 

after any measurement(s) of any feature(s), compute the offsets 

that should be applied to the process. At APN, an algorithm 

(called the Offsets computing engine) automatically computes 

the new correction/offsets and applies them each time a 

measurement is carried on. 

Table 1. Summary of the literature on sampling methods. 
 

 

Author Application Objectives Conclusion of the authors Applicability of the method to the 
research problem 

Dodge and 

Romig [1929] 

Generic Study and definition of the concepts 

of consumer’s and producer’s risk in 

lot inspection, concepts that are 
largely used in traditional sampling 

methods 

 

According to various levels of risk, the 

authors developed charts and graphs 

allowing the users to define the 
acceptance number, sample size, and 

minimum amount of inspection per lot 

The proposed method is used to 

determine if a lot should be 

accepted based on the inspection of 
a few samples and not in the context 

of a process control of multi-

featured parts 
Lieberman and 

Resnikoff 
[1955] 

Naval parts 

inspection 

Define sampling methods based on 

known standard deviation, unknown 
standard deviation, and mean range of 

the values inspected 

 

The authors defined methods that are 

still considered today as the basis for 
quality control of part lots and sampling 

The authors had the assumption that 

the sampled variables are 
independent, identically distributed 

normal variables 

Das and Mitra 

[1964] 

Generic Study the effect of normality 

assumptions on acceptance sampling 

plan for non-normal distribution 
 

The authors proved that there are 

significant distortions on acceptance and 

rejection rate when normality 
assumptions are wrongfully made 

No method is presented in this 

article. The authors outlined the 

difference of assuming incorrectly a 
normal distribution 

Kogan and Raz 

[2002] 

Software 

development 

Tackle the problem of defect detection 

and inspection intensity in a project 
management 

 

 

Based on historical data, the authors 

used traditional integral calculus to 
determine the optimal inspection 

intensity 

The analytical method proposed by 

the authors is specifically designed 
for defining inspection points when 

managing a project 

Lee [2002] Wafers 

manufacturing 

(semiconductor) 

Using a metric called wafers at risk, 

develop a method to define the 

optimal inspection locations to 
maximize defect detection rate and 

meet wafers at risk constraints 

 

The use of machine learning, more 

precisely a self-organizing map, allowed 

the authors to significantly increase the 
defect detection rate 

The method focuses on defining the 

sampling locations on the wafers, 

which cannot be applied to 
machined parts with multiple 

features 

Dauzère-Pérès 

and al. [2010] 

Wafers 

manufacturing 

(semiconductor) 

Using a metric called wafers at risk, 

develop a simulation model 

permutating different combinations of 
inspected products 

 

 
 

With their method, the author succeeded 

in cutting the average number of wafers 

at risk by half, and decreasing 
significatively the time wafers at risk 

spent above the warning limits of the 

process control chart 

The method focuses on defining the 

sampling locations on the wafers, 

but cannot be applied to machined 
parts with different features 

Pearn and Wu 

[2006] 

Generic Design a sampling method based on 

the Taguchi process capability index 
(Cpm) that considers the producer’s 

and consumer’s risk 

 

The authors designed an inspection 

procedure based on the Cpm that 
considers the consumer’s and producer’s 

risk 

The authors had the assumption that 

the sampled variables are 
independent, identically distributed 

normal variables 

Negrin and al. 

[2011] 

Generic Define a multi-level sampling method 

based on the process capability index 

(Cpk) 
 

 

 

Using the coefficient of determination 

(R2), the authors developed a multi-level 

sampling method that analyses the 
information gained due to expectation 

which allows its user to decrease the 

inspection rate when he successfully 
predicts the inspected values 

 

The authors had the assumption that 

the sampled variables are 

independent, identically distributed 
normal variables 

Yu and al. 
[2012] 

Computer 
processor 

design 

Study the use of active learning 
schemes in design space exploration 

to improve the efficiency of computer 

simulation 
 

 

Using two active learning methods 
proposed by MacKay [1992] and Cohn 

[1993] to measure the reduction of a 

predictive variance, the authors 
developed a method of sampling points 

in a very large design space 

The method proposed by the 
authors implies to fit a predictive 

model to approximate the design 

space, which is often unrealistic for 
real case studies 

Moroni and 

Petro [2018] 

Part machining Study the sampling process modelling 

in Industry 4.0 

 
 

 

The authors defined three sampling 

methods: blind strategies, 

manufacturing-based strategies, and 
adaptative strategies. Each kind of 

sampling strategies has an increasing 

level of intelligence and adaptability 

The approaches mentioned by the 

authors are applied for defining 

inspection physical locations on 
machined parts, and not to define 

sampling rates 

Nesaee and 

Nezhad [2021] 

Generic Study the effect of having a double 

sampling plan based on the 

exponential weighted moving average 
(EWMA) of previous lot sampling 

 

 

The authors concluded that having a 

double sampling plan allows its users to 

decrease the average number of parts 
sampled from a lot, and this for an 

equivalent amount of consumer’s and 

producer’s risk 

The authors had the assumption that 

the sampled variables are 

independent, identically distributed 
normal variables 

     



 

 

 Therefore, the process is said to be “self-corrected”, which 

makes the part measurement distribution be well confined 

between control limits. Furthermore, these measurements are 

time series and dependant while they cannot be considered as  

normally distributed. For these reasons, traditional sampling 

methods as proposed by popular approaches like Six Sigma 

(see  Pyzdek [2003] for more information) or normative 

organization cannot be applied since they generally assume 

normally and independently distributed data, i.e. there is no 

correlation between two measures at different times for the 

same feature.  

3.3 Production historical data 

The present case offers a very rich historical database, which 

can be used to design and validate a virtual tool that could be 

used as a digital twin to the actual sampling process. Then, 

with a predefined method to explore the design space, one can  

theoretically iterate on the digital twin and simulate which 

sampling plan would minimize the inspection effort while 

maximizing the overall quality of a lot of a specific part. Using 

this method allows one to overcome the problem of non-

independently and non-identically distributed data mentioned 

previously.  

 

Thus, the dataset used in the approach and extracted from this 

database consists of: 

 All the information allowing users to identify each 

part of the batch, including the manufacturing time 

and date of the part; 

 The inspected measurements of each feature for each 

part; 

 The theoretical measurements of each feature for each 

part. These measurements are calculated with simple 

linear interpolations of inspected measurements; 

 When the tools are changed; 

 The accumulated offsets for each feature of each part. 

 

However, one of the challenges of using this dataset is the fact 

that not every part of a batch is inspected and measured, which 

is why we have theoretical measurements of some features. At 

the moment, these theoretical measurements are computed 

with a linear interpolation, but some evidences show that this 

approximation is not accurate. 

 

The data composing the dataset are acquired automatically and 

managed by an in-house manufacturing software. The 

 
Figure 1. Cross section of a fictional metal part with a 

hole and a chamfered edge. Represents the effect of a 

change of one feature on another. 

Figure 2. Digital twin of the sampling process and 

his components. 



measurements are logged automatically when sent to the CMM 

cells or manually when a feature is measured by the operator 

or with the help of an optical comparator. It is relevant to 

mention that the dataset previously described has been 

standardized for multiple digital transformation initiatives. 

4 DIGITAL TWIN FOR SAMPLING PLAN EVALUATION 

The machining process is considered as a deterministic model 

that is a function of the sampling rate, since the number and 

the intensity of compensations are directly dependent on that 

sampling rate. Now consider the equation (1): g(x,y)=z, where 

x = [x1, x2, …, xj] is a 1xj vector that represents the sampling 

rate of the jth feature, y is a ixj matrix which represents the 

feature historical measurements for a particular product of the 

ith part and of the jth feature and z is also a ixj matrix which 

represents the value of the jth feature simulated measurement 

on the ith part of the manufactured lot. From these values, we 

can compute, for each part/feature combination, a deviation 

from the nominal value of the feature that was defined in the 

design process but also the theoretical number of noncompliant 

parts. These two quality indicators will eventually be used to 

compare different sampling plans as we can deduce from the 

equation (1) that these indicators are indirectly a function of 

the sampling plan in place and of the historical data used to do 

the analysis.  

 

In order to achieve this level of computing, a digital twin of the 

sampling process was developed. Figure 2 presents this digital 

twin and its different components along with its required input 

and output. Let us detail a bit more each of these components: 

 

The model is based on historical data (1). We know, for each 

part, which features were measured as long as their value. We 

also know the values of the computed offsets. As we have 

access to the real Offsets computing engine (4), we can modify 

the original data to remove the effects of the offsets that were 

carried on. This way, obtain have data (2) that shows how 

production would have derived if no offsets/corrections have 

been applied. Then, we can define any other sampling plan (3). 

Using simulation, we “replay” the production. Each time the 

sampling plan states some measurement must be carried on, 

we measure the features according to the sampling plan, call 

the offsets computing engine (4) and apply the offsets for the 

future parts. 

 

From the resulting data (5), one can calculate various key 

performance indicators as the average measurement deviation 

per parts, the number of noncompliant parts or the number of 

part measurements that trigger a quality control warning. 

 

As a fictional example, we could think of a part with two 

features, its length and width, for which we want to simulate 

the sampling rates of x = [x1,x2]. The historical measurement 

could be y = [y11,y12,…,y1N; y21,y22,…,y2N] where each 

measurement is either an inspected measurement or a 

theoretical measurement and where N is the total number of 

parts used in the historical data. In addition to these data, we 

also have a matrix of the same size as y that represents the 

cumulated historical offset, and we have a vector indicating 

when the tools associated with the two features are changed 

(step 1 of Figure 2). Now, we start by computing the 

measurement of each part and feature, without any offset, by 

subtraction of the historical cumulated offset (step 2). We then 

simulate inspection events, meaning which parts would be 

inspected considering x (step 3). Since the offsets are always 

the negative difference between the features’ measurements 

obtained and the nominal values of the features, we 

deterministically apply offsets following the inspection events 

(step 4). Thus, we finally have simulated measurements for the 

two features mentioned previously of every part from the 

historical data that correspond to the matrix z, which allows us 

to evaluate the performance indicators mentioned in the 

previous paragraph. 

5 CONCLUSION 

This article aimed at defining an approach to simulate what 

would happen if a different sampling plan was used in the 

context of a high-precision part machining process. Since the 

approach was designed for using historical production data, its 

application does not require any statistical premises as a 

normal distribution or uncorrelated data. This digital twin will 

undoubtedly be a valuable tool to determine optimal sampling 

settings at APN.  

 

The use of models for complex manufacturing processes is one 

of the pillars of Industry 4.0 [Kagermann and al., 2013]. 

Digital twins are the first step towards the design of more 

intelligent and adaptative sampling models, models that will 

eventually take into account the ever-changing parameters, 

conditions and performance of the machining process studied 

in this project. In our case, the digital twins presented as well 

as the future models will fulfill the role of a decision-making 

tool to analyze what-if scenarios. The full automation of the 

sampling plan definition process will however not be 

considered, as the quality of the product is too critical for the 

company’s success. 

 

One of the next steps will be to analyze the preliminary results 

in order to confirm the representativity of the dataset used and 

make sure that the data allow the model to be robust enough to 

work for different process conditions.  
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