
Abstract- In recent years, Industry 4.0 has reached different economic sectors. This innovation opens the door to 

developing new technologies and approaches to solving daily challenges in maintenance. In this paper, a maintenance 4.0 

strategy is developed by using digital technology, the Internet of Things, and real-time data access. The objective is to 

increase the useful life and to decrease operational costs. The paper evaluates three different maintenance strategies by 

using a Monte-Carlo simulation approach to support Electric Buses’ (EBs) maintenance management. One of those 

strategies uses the Maintenance 4.0 approach, and its results show operational maintenance’s cost savings. 
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1 INTRODUCTION 

Nowadays, the use of electric buses for public transport has 

increased significantly. The STM in Montreal is planning on 

increasing the number of electrical buses [Bus électriques, n.d.]. 

Every electric bus is composed of an integrated system [Taha et 

al., 2021]. In this system, part replacement is a time-consuming 

operation in which the high-voltage safety constraints have to 

be fulfilled and power voltage must be drained before the 

replacement [DGUV, 2012]. Therefore, the maintenance of 

electric buses must be done in a garage that has the necessary 

tools and equipment, and failure on the road is costly.  

 

 

This paper uses a simulation approach to evaluate different 

maintenance strategies, which include a Maintenance 4.0 

opportunistic one. The objective is to determine if the use of 

Maintenance 4.0 would result in any cost savings. 

  

The Maintenance 4.0 approach comes from the fourth industrial 

revolution known as Industry 4.0 which emphasizes the use of 

digital technology, the Internet of Things, and real-time data 

access [Righetto et al., 2021]. More specifically, in the field of 

maintenance, it involves: 

1. The use of sensors and other data sources and machine 

learning algorithms to analyze maintenance data and to 

recommend the best course of action for maintenance 

activities. 

2. Data access by means of internet or cellular 

technologies.  

3. Digital Twins (DTs) which are virtual replicas of 

physical assets that provide real-time information 

through sensors. The DTs simulate and optimize 

maintenance actions. 

 

Presently, the maintenance strategy that is based on the health 

condition of a component is called condition-based maintenance 

(CBM). [Du et al., 2020] used proportional hazard models in 

which the condition is measured by vibration signals. The 

objective is to predict the spindle’s remaining useful life. [Chen 

et al., 2020] used autoencoder (machine learning technique) to 

extract significant features and then use the Cox proportional 

hazard model in which the condition is represented by 

cumulative mileage, engine’s age, and vehicle’s age to estimate 

the RUL and to compensate censored data.  Deep learning 

techniques were used to predict the time between failures. [Tong 

et al., 2022] propose an approach to optimize predictive 

maintenance by a combination of Neural Networks and 

proportional hazard models. All these papers proposed methods 

to improve remaining useful life estimation, time between 

failures estimation, and optimize predictive maintenance for 

single-component systems. 

 

Opportunistic maintenance is based on replacing components 

that have not failed yet but meet specified criteria at scheduled 

or unscheduled downtimes of the bus. It is a maintenance 

strategy that is implemented in hierarchical multicomponent 

systems [Barde et al., 2016] [S. Barde et al., 2016], [Abdel 

Haleem & Yacout, 1998]. They later compared maintenance 

strategies including opportunistic maintenance in which 

opportunistic replacement's decision is based on age and 

according to safety limits. [Jiang et al., 2021] and [Y. Chen et 

al., 2022], both used condition-based maintenance to model the 

system’s behavior and take maintenance actions when an 

opportunity arises. [Jiang et al., 2021] considered a series-
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parallel hybrid system with economic dependence. [Y. Chen et 

al., 2022] considered one system with identical and independent 

components. [S. R. A. Barde et al., 2019] used reinforcement 

learning to get the optimal opportunistic maintenance age-based 

policy. The condition of the components was not considered. 

 

This paper proposes an opportunistic and age-based 

maintenance that takes into consideration the condition of the 

components. The data regarding the age and the health of the 

component is obtained from sensor’s readings. The data is 

analyzed by machine learning algorithms to determine whether 

a certain component should be replaced or not. The main 

differences between the proposed strategy and those that are 

mentioned in the literature are the use of real-time data that give 

dynamic modeling capabilities instead of the static models 

obtained by the proportional hazard models. Moreover, our 

proposed strategy automates the decision-making process by 

building a digital twin and by using machine learning for finding 

the best maintenance action. As such, the main advantages of 

our proposed modeling strategy over the CBM strategies, 

specifically the proportional hazard models are:  

1. It adapts to changes in health condition over time. This 

makes it useful for dynamic environments, which is 

required for electric buses in public transport. 

2. It handles non-linearity, collinearity, and high-

dimensional data by using the appropriate machine-

learning techniques. 

3. It provides real-time predictions. 

4. Some machine learning techniques are able to handle 

incomplete data. They are useful for real applications 

in which the data comes from sensors. 

5. It automates the decision-making process through 

Machine learning. 

 

2 PROBLEM DESCRIPTION. 

Without loss of generality, in this paper we consider only the 

driveline system of electric buses. This system is composed of 

four main components: 1) The electric Motor, 2) the wheels, 3) 

the tires, and 4) the transmission (Figure 1).  

 
Figure 1. Electric Bus Driveline system layout 

 

Three maintenance strategies are considered. 

1. Corrective Maintenance Strategy in which a 

component is replaced only if it fails.  

2. Opportunistic Maintenance Strategy in which a 

component is replaced if it fails. Other components are 

also replaced if their ages have reached a specified age 

control limit (ACL). 

3. Opportunistic Maintenance 4.0 strategy. We assume 

that we have a real-time condition’s indicator “Zo” that 

represents the state or the health of the components.  A 

component i, is replaced if it fails. The other 

components, o=1, 2, 3, are replaced if their ages have 

reached a specified age control limit (ACLo), or if Zo 

has reached a specified state control limit (SCLo).  

 

 

3. METHODOLOGY 

3.1 Nomenclature. 

• i: Component ith    that failed and that needs 

replacement, i = 1,2,3,4 

• Cci: Cost of the ith component. 

• WFi: Replacement Cost of the ith component which 

will be replaced because an opportunity exists. 

• TF: Tow Fees 

• RNo It’s a flag to indicate if the oth component needs to 

be replaced opportunistically. It takes the values 1 for 

YES and 0 for NO. 

 

The maintenance cost associated to the failure of component i  

is computed by equation 1. 

 

C = ∑ Cci

4

i=1

+ ∑ WFi

4

i=1

+ TF (1) 

  

Where C is the Maintenance cost associated with the failure of 

component i, Cci is the cost of the ith component to be replaced, 

WFi is the cost of manpower used of the replacement action, and 

TF is the tow fees. 

3.2 Maintenance Strategies 

Three maintenance strategies are compared: 

1. Corrective Maintenance Strategy: In this scenario, a 

component is replaced only if it fails.  

2. For the Opportunistic Maintenance Strategy, the cost 

saving of replacing more than one component results 

from the TF, which is charged once per event of 

failure. The decision to replace a component 

opportunistically is given by equation 2: 

 

𝑅𝑁𝑜 = {
1, 𝐼𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 , 𝐿𝑐𝑜 > 𝐴𝐶𝐿𝑜

0,  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

 
 

 Where Lco. is the age (in hours) of the oth component, 

o=1, 2, 3. The values of ACLo, o=1,2,3 are obtained 

from equation 3.  The Age Control Limit values for 

each component are obtained by minimizing the 

maintenance cost per unit time [Jardine et al., 2013]. 

This equation represents the optimal preventive 

maintenance time, tp, when a fixed age strategy is used. 

In this case ACL is equal to tp. 

 

C(tp) =
Cp∗R(tp)+Cf∗F(tp)

tp∗R(tp)+∫ tf(t)dt
tp

0

  (3) 

  

In equation 3, C(tp) is the preventive maintenance cost 

per unit time if the component is replaced at time tp, 

Cp is the cost of preventive action, R(tp) is the 



reliability at time tp, Cf is the cost of corrective 

maintenance, and F(tp) is the probability of failure at 

time tp. The goal is to find the time tp that minimizes 

the cost of preventive maintenance of a component. 

We use equations 4 and 5 to compute Cpi and Cfi, 

respectively, for each component i, as follows. 

 

Cpi=Cci + WFi   (4) 

Cfi= Cci + WFi + Tow Fees (5) 

 

 

3. Opportunistic Maintenance 4.0 Strategy. The decision 

to replace a component is given by: 

 

𝑅𝑁𝑜 = {
1, 𝐼𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 ∨  𝐿𝑐𝑜 > 𝐴𝐶𝐿𝑜  ∨  𝑍𝑜 > 𝑆𝐶𝐿𝑜

0,  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

 

Where SCL is the State Control Limits and Zo provides 

information about the condition or the health of the oth 

component of a system, o=1, 2, 3. In a generic form, this 

indicator is the output of a model that takes, as input information 

readings from sensors placed on the components 1, 2, 3, and 4 

of the physical system, as shown in figure 2. 

 
Figure 2. "Z" indicator Schema 

In this paper, Zo is a normalized real-time indicator.  It takes 

values between 0 and 1. For example, if the Zo = 1, it means that 

the oth component is in a critical state, and if Zo = 0, this means 

that the component is in a perfectly normal state.   

 

 

4. Numerical Example 

4.1 Monte-Carlo Simulation. 

The Operational maintenance costs are the cost of each 

component, the cost of manpower to replace each component, 

and the tow fees of failure on the route [Remorquage-Exclusif-

Tarifs.Pdf, n.d.]. The historical data about the component’s 

failures are given in [S. R. A. Barde et al., 2019]. Based on real 

failure data, the authors developed the Weibull distributions 

representing the failures events of each component. The 

parameters of the Weibull distributions that represent the failure 

times of each component are shown in table 1. In this paper 

these parameters are used in a Monte-Carlo simulation to 

generate failure times for each component of the four 

components. 

 

 
Table 1. Maintenance Information 

 

The Monte-Carlo simulation is a method to solve mathematical 

and or technical problems using probabilistic models through 

the simulation of random variables when their probability 

density function is known. As, such, Monte-Carlo simulation is 

used to generate failures events for each of the fours 

components. For this purpose, the R programing language is 

used [Wang & Pham, 2006].  In this paper, the random variable 

is the time to failure of the ith component according to their 

Weibull distribution function.  

For simulation purposes, Zo is computed as follows: 

 

Zo = VLco/ TtFo+Error (7) 

 

Where VLco is the age of the oth component (in hours), TtFo is 

the time to failure of the oth component (in hours) that is 

generated by Monte Carlo simulation and the error is a random 

variable that follows a normal distribution with mean = 0 and 

standard deviation = 0.001, which purpose is to make the Z 

indicator more realistic by introducing random noise.  

 

The Monte-Carlo simulation inputs are Weibull Distribution 

function parameters, the Costs, the Age Control Limits (ACL) 

for strategies 2 and 3 and the State Control Limits (SCL) for 

strategy 3. 

In this paper, the simulation run length is 100,000 hours and the 

output is the average cost per unit of time, which is computed 

as: 

 

AC= CC(T)/ T (Equation 8) 

 

Where AC is the average cost per unit time, CC(T) is the 

cumulative maintenance cost of the system operating T hours, 

and T, is the run duration, which in this case is 100,000 hours. 

Some necessary assumptions to perform the Monte-Carlo 

simulation are: 

1. Buses run 24 hours. 

2. At the beginning of each simulation run, all the 

components are as good as new. 

3. The opportunistic maintenance and opportunistic 

maintenance 4.0 are done only at the failure of a 

component.  

Component 
Electric 

Motor 
Wheel Tire Transmission 

Shape 1.005955 79.81 414.16 109.25 

Scale (hours) 15,804.8 713.55 2365.08 996.88 

MTTF 

(hours) 
15,758.79 708.5 2361.8 991.7 

Component 

Cost (Cci) 
$50,000.00 $463.00 $704.00 $20,000.00 

Replacement 

time 
24 hours 2 hours 1 hour 24 hours 

Manpower 

hourly rate 
$14.25 

Manpower 

Cost (WFi) 
$342 $35.62 $14.25 $342 

Tow fees $2180.33 



4. All components are replaced by new ones. No repairs 

are considered. 

5. The Electric bus driveline is a series reliability system, 

one component’s failure stops the entire system.  

6. All the components in the system are statistically 

independent. 

7. The tow fees are only applied once per failure event on 

the road. This  means that if a  component fails and it 

is decided to replace other component 

opportunistically , the tow fees remain the same 

$2180.33. 

8. All the replacement parts are available when needed. 

 

To make sure that simulation run is long enough , we perform a 

100,000 hours’ long run to compare the simulated mean times 

to failure (MTTF) versus the theoretical ones for each 

component [Abdel Haleem & Yacout, 1998]. During this run, 

no opportunistic maintenance was performed. From Table 2, we 

can observe that the MTTF values obtained from the simulation 

run are very similar to the theoretical ones, the only one that 

deviates slightly is the electric motor, due to the low number of 

failures during the simulation run, which is expected according 

to its Weibull parameters.  

 
Table 2. Theoretical vs Simulated MTTF Values 

 

4.2Numerical Results 

The age, and the state control limits for each component are 

shown in Table 3 

 

Table 3. Age Control limits and State Control Limits 

 
Electric 

Motor 
Wheel Tire Transmission 

ACL 

(hours) 

At 

failure 
663 2325 975 

SCL 0.8521 0.6992 0.4845 0.7318 

 

Each maintenance strategy was run 30 times. The histograms of 

the average cost per unit time resulting from those 30 runs are 

shown in figure 3. A visual comparison is given in figure 4, 

which represents the average cost and their confidence intervals 

at 95% of confidence for each strategy, and finally, table 4 

shows a numeric summary. 

 

 
Figure 3. Histograms of the average cost per unit time per strategy 

 

 
Figure 4. Average cost per unit time comparison 

 
Table 4. Simulation runs summary 

 Corrective 

Maintenance 

Opportunistic 

Maintenance 

Opportunistic 

Maintenance 

4.0 

Average 

Cost / hour 
30.94514 30.29737 29.81227 

Standard 

Deviation 
1.207036 1.115832 1.131891 

 

To validate that the average cost from strategy three is 

statistically lower compared to the other two strategies, we 

verify that the data follows a normal distribution by using the 

Anderson-Darling test. Then we perform a two-sample T-test 

for the means. With 95% confidence, we can conclude that the 

average cost/hour from strategy three is significantly lower than 

strategies one and two. The two sample T-test results are shown 

in Table 5, where AC is the average cost per unit of time. 

 
Table 5. Two-sample T-test results 

Strategy 

Comparison 

P value Alternative Hypothesis 

3 vs 1 0.0002 ACstrategy3 < AC Strategy1 

3 vs 2 0.0499 ACstrategy3 < AC Strategy2 

 

We can observe that strategies two and three are better than 

strategy one. The cost saving when implementing strategies two 

and three is $0.647/hour and $1.1328 /hour, per bus respectively 

compared to the corrective maintenance. 

If strategy two is implemented, when analyzing a horizon of 5 

years, the savings will be around $32,100.00 per bus. In the 

same way, if strategy 3 is implemented, in a horizon of 5 years, 

the savings will be around $49,600.00 per bus.  
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Electric 

Motor 
Wheel Tire Transmission 

Theoretical 

MTTF 

15,758.79 

hours 

708.5 

hours 

2361.8 

hours 
991.70 hours 

Simulated 

MTTF 

13,799.5 

hours 

708.0 

hours 

2361.3

hours 
992.03 hours 

Error % 12.43% 0.04% 0.02 % 0.03% 
Number of 

failures 
7 141 42 101 



On October 2022, the average number of available STM 

(Société de transport de Montréal) buses was around 1589 units 

[Indicateurs de performance, n.d.], this could represent a total 

saving of $51,006,900.00 and $78,814,400 .00 for strategy two 

and three respectively. 

4. CONCLUSION 

From the results, we can conclude that the best maintenance 

strategy is Opportunistic Maintenance 4.0. The fact that using 

sensor data for condition monitoring and machine learning 

techniques which adapt dynamically to new sensor data makes 

maintenance 4.0 promising advancement in maintenance 

management. The saving resulting from opportunistic 

maintenance 4.0 is not negligible for a five-year horizon 

maintenance plan. However, the results are highly dependent on 

the accuracy and precision of the Zo indicator (the condition of 

the components). In practice, this indicator and the model used 

to estimate it should be carefully analyzed to obtain optimal 

results. 

 

For future work, real data will be generated from the testbed that 

is constructed in the Intelligent Physical Systems’ laboratory at 

Polytechnique Montreal. 

 

Finally, a digital twin, will be developed to automatically 

estimate, and adjust over time, each component’s failure 

probability function and  degradation state in real time (Z) to 

develop adaptive maintenance actions, for maintenance 

management, especially for large number of vehicles in fleets. 
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