
Abstract – Predicting the future health of production systems in manufacturing through forecasting is a reliable method. 

Manufacturers can detect potential issues early and take appropriate actions by using forecasting techniques. While many 

studies focus on predicting system health using process data such as sound, vibration, and magnetic readings of machines, 

there are limited studies that use product quality data to forecast the evolution of manufacturing systems. Besides, 

forecasting the short-term product quality time series in manufacturing systems, which are nonlinear, non-stationary, and 

nonseasonal, can be challenging. This study explores the use of peephole long short-term memory-based recurrent neural 

networks to forecast product quality data and address this challenge. Peephole LSTM-based RNN can effectively utilize the 

long-term dependencies in the product quality time series for more accurate forecasting. Experiments have been conducted 

to demonstrate that LSTM-based RNN can accurately forecast the complex quality of time series with a long forecasting 

horizon, and its performance is superior compared to many other forecasting methods. 

Keywords – Time series forecasting, deep learning, and smart manufacturing. 

 
1 INTRODUCTION 

Forecasting is used as a tool in manufacturing for predicting the 

future health of production systems and creating maintenance 

plans (Kahraman et al., 2010). By using forecasting, 

manufacturers can predict potential issues with production 

systems and plan maintenance activities to prevent or minimize 

downtime (Vu et al., 2021). This proactive approach can result 

in several benefits for the manufacturing process, including 

improved efficiency (Mourtzis & Vlachou, 2018), reliability 

(Mobley, 2002), and cost savings (He et al., 2018).  

 

Many studies in the field of manufacturing focus on using 

process data, such as sound, vibration, and magnetic readings of 

machines, to predict system health and schedule maintenance 

more effectively. For instance, (Janssens et al., 2016) found that 

by analyzing vibration data, it was possible to detect early signs 

of bearing wear and predict when maintenance would be 

needed. (Peng et al., 2010) used sound data to predict the health 

of a machine's gears and detect early signs of gear wear. 

Additionally, (Scalabrini Sampaio et al., 2019) used magnetic 

readings to predict the health of a machine's electrical systems, 

detecting early signs of electrical issues such as power loss. 

Furthermore, (Wu et al., 2021) used a combination of vibration 

and sound data to predict the health of a machine's shafts and 

detect early signs of shaft wear. (Deutsch & He, 2017) used a 

feedforward neural network (FNN) to predict the remaining 

useful life of bearings in a manufacturing system. The study 

found that the FNN model was able to accurately predict the 

remaining useful life of the bearings and improve maintenance 

planning. (Zhu & Chen, 2006) predict the remaining useful life 

of machines in a manufacturing system. The study found that 

the CNN model was able to accurately predict the remaining 

useful life of the machines based on images of the machines and 

improve maintenance planning. 

 

Although extensive research has been done, accurate product 

quality forecasting still needs to be improved in manufacturing. 

Currently, limited studies use product quality data in this way, 

possibly due to a need for more resources or an understanding 

of how to utilize the data. As data collection and analysis 

capabilities improve, it is expected that more studies will be 

conducted in the future utilizing product-quality data. Using 

product quality data in manufacturing systems to predict their 

evolution can be beneficial in several ways. Analyzing this data 

can help manufacturers identify patterns and trends in their 

products, as well as potential issues with their processes 

(Rüßmann et al., 2015).  

 

 On the other hand, product quality forecasting is usually a 

univariate time series forecasting problem more challenging 

than the corresponding multivariate time series forecasting 

problem. Because there is no additional information from other 

data sources that can be utilized for learning (du Preez & Witt, 

2003). In addition, compared with linear, stationary, and 

seasonal time series, short-term product quality time series in 

manufacturing systems are nonlinear, non-stationary, and 

nonseasonal, where nonseasonal means without apparent 

periodicity in time. It is not easy to forecast accurately such a 

time series in a long time horizon. Therefore, more efforts are 

needed to develop more effective forecasting methods. 

 

In this study, we propose a short-term product quality 

forecasting solution by utilizing the Long-Short-Term-Memory 

(LSTM) method (Hochreiter & Schmidhuber, 1997). LSTM is 

a specialized Recurrent Neural Network (RNN) that excels in 

learning and predicting temporal sequences and long-term 

dependencies more effectively than other methods such as Deep 

Neural Networks and traditional RNNs (Sak et al., 2014). We 

introduce a new forecasting approach that utilizes LSTM to 

accurately predict the complex and unpredictable nature of 

univariate product quality time series. This approach can 

effectively forecast over a long-term horizon. 

 

The remainder of this paper is organized as follows. The 

univariate time series forecasting problem is introduced in 

Section 2. In Section 3, the product quality forecasting scheme 
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with LSTM-based RNN is presented. Experiments and 

conclusions are given in Sections 4 and 5, respectively. 

2 MULTI-STEP AHEAD TIME SERIES FORECASTING 

The goal of multi-step ahead forecasting for a univariate product 

quality time series is to use past observations, represented by

1 2
, , ,

Nt t tX X X , to predict future observations, represented by

1 2, , ,
N N Nt t t HX X X , where H is the forecasting horizon. The time 

horizon for forecasting in product quality control can vary 

depending on the specific product and industry, it is often 

determined by the time it takes for a product to go from 

production to delivery to the customer. For example, perishable 

goods have a shorter time horizon compared to products with a 

longer production and delivery cycle such as cars or machinery. 

Factors such as the level of uncertainty in the forecasting 

process and the cost of forecasting errors may also influence the 

time horizon for forecasting. Typically, product quality data are 

obtained through smart sensors or CPS (Cyber-physical 

system), if the smart sensors have a sampling interval of 60 

minutes, the forecasting horizon H can be for 24 hours (one day) 

ahead of product quality forecasting. On the other hand, CPS 

has an even higher sampling frequency with a sampling interval 

in sub-seconds, and the forecasting horizon can be extremely 

long. 

2.1 Recursive Strategy 

Three methods are commonly used for multi-step ahead time 

series forecasting: the recursive strategy, the direct strategy, and 

the multiple-input and multiple-output (MIMO) strategy (Taieb 

et al., 2012). The traditional and most simple method is the 

recursive strategy (Hamzaçebi et al., 2009), which uses a single 

forecasting model, ( )f  , to make predictions one step at a time. 

This is done by using the equation: 

 

1 1 1( , , , )t t t t dX f X X X     (1) 

 

Where t  ranges from d  to N , d  is the dimension of the 

estimator, is the additive noise, : df R R is the estimator, and 

R represents the real field. To make predictions H steps ahead, 

the one-step-ahead prediction 
1Nt

X is first made using the 

equation (1). Then, with the forecasted 
1Nt

X  as part of the input 

time series, the next step is to estimate 
2Nt

X  using the same one-

step ahead forecasting model in equation (1), and this process is 

repeated until 
Nt HX has been estimated. 

 

The recursive strategy is simple to use, but it can be affected by 

the build-up of forecasting errors when the forecasting horizon 

is large. In this strategy, any errors made in previous predictions 

are carried forward and accumulated, which can negatively 

impact the accuracy of future predictions. This problem is more 

noticeable as the forecasting horizon increases (Taieb et al., 

2012). 

2.2 Direct Strategy 

The direct strategy is another method for multi-step ahead 

forecasting (Cox, 1961). Unlike the recursive strategy, it creates 

H different forecasting models based on the observed time series 

data for each forecasting horizon. The equation for this strategy 

is:  

 

1 1( , ), ,t h h t t t d hX f X X X   (2) 

 

Where h  ranges from 1  to H , hf  is the thh  forecasting model 

and 
h
 is the additive noise associated with the thh  model. The 

direct strategy does not use any forecasted value as input, so it 

is not affected by accumulated errors. However, since each of 

the H  forecasting models is trained separately and 

independently, it may result in conditional independence among 

the H forecasted values (An & Anh, 2015). This independence 

effect can degrade forecasting performance by not reflecting the 

statistical dependency among the forecasted data. 

2.3 Multiple-input and Multiple-output (MIMO) Strategy 

Both the recursive and direct strategies are known as single-

output strategies, as they use multiple inputs (a vector) to create 

a single output (a scalar) (Taieb et al., 2012). The MIMO 

strategy, on the other hand, uses multiple inputs to create 

multiple outputs (Bontempi, 2008). The result of this strategy is 

a time series (a vector) instead of a scalar. The equation for this 

strategy is:  

 

1 2 1 1, , , ( , , , )t t t h t t t d HX X X F X X X  (3) 

 

where 
H

 is the noise vector, : d HF R R . Unlike the single-

output strategies, the MIMO strategy can handle the conditional 

independence problem by preserving the temporal statistical 

dependency in the forecasted time series. However, it has lower 

flexibility and variability compared to other forecasting 

strategies as all the data are forecasted using the same model 

(Taieb et al., 2010). 

3 LSTM-BASED RNN FOR PRODUCT QUALITY FORECASTING 

3.1 Recurrent Neural Networks (RNNs) 

Feedforward neural networks, such as MLP (Multilayer 

Perceptron), DNN (Deep Neural Network), and CNN 

(Convolution Neural Network), have achieved great success in 

various supervised or unsupervised machine learning 

applications. However, their performance is heavily dependent 

on the independence assumption among training and test data 

(Lipton et al., 2015). When data in a time series are dependent 

on each other or the assumption of independence is not met, the 

learning performance of these networks will degrade due to their 

lack of capability to model long-term dependencies. Time series 

forecasting is a prime example of a scenario where current data 

points are related to previous data points, and long-term 

dependence is at the core of time series forecasting. 

Furthermore, feedforward neural networks are limited by the 

requirement of fixed-length inputs and targets (Sutskever et al., 

2014), which also makes them inappropriate for sequence (such 

as time series) learning. 

 

On the other hand, Recurrent Neural Networks (RNNs) are 

specifically designed to handle sequential data or time series 

(Medsker & Jain, 1999). RNNs allow signals to travel both 

forward and backward through the network by introducing 

loops, which enable internal connections among hidden units. 

These internal connections make RNNs more suitable for using 

information from past data to predict future data. Furthermore, 

RNNs have the ability to explore temporal relationships among 

data that are far apart from each other (Pascanu et al., 2013). 



 
Figure 1. The architecture of RNN 

Fig.1 illustrates the structure of an RNN. Given a time series 

input of 
1 2{ , , , }Tx x xx , the RNN repeatedly calculates the 

hidden state sequence 
1 2{ , , , }Th h hh  and the output sequence 

1 2{ , , , }Ty y yy  using the following equations: 

 

1( )t hx t hh t hh f W x W h b   (4) 

 

( )t yh t yy g W h b   (5) 

 

In (4) - (5), 
hxW , 

hhW  and 
yhW represent the input-hidden weight 

matrix, the hidden-hidden weight matrix, and the hidden-output 

weight matrix respectively. 
hb  and 

yb  are the bias of the hidden 

and output layers respectively. (.)f  and (.)g  are the activation 

functions for the hidden and output layers respectively. The 

RNN uses the hidden state 
th  at the time step t to remember the 

network's state. The hidden state captures all the information 

from previous time steps. 

 

Multi-step-ahead time series forecasting involves predicting 

multiple steps into the future, which requires accounting for 

dependencies between data points. However, as the interval of 

data dependencies increases, simple RNNs may struggle with 

the gradient vanishing problem (Bengio et al., 1994). This 

means that the influence of input data at much earlier times 
et

on the forecasted data 
t hx  decreases rapidly as the time 

difference between t h  and 
et  increases. As a result, simple 

RNNs may not be well suited for forecasting problems with 

long-term dependencies. 

3.2 LSTM (Long-Short-Term-Memory) Architecture 

The LSTM architecture, developed in 1997 by (Hochreiter & 

Schmidhuber, 1997) and further improved by others (Graves et 

al., 2013), is an efficient type of Recurrent Neural Network 

(RNN) designed to address the issue of vanishing gradients in 

standard RNNs when handling long-term dependencies.  

 

In contrast to the standard RNN, which is composed of a series 

of simply hidden layers, the hidden layers of LSTM have a more 

complex structure. This structure includes the implementation 

of gates and memory cells in each hidden layer. The input, 

forget, and output gates control the flow of information into and 

out of the memory cells, while the memory cells themselves 

store the information over a long period of time, effectively 

resolving the vanishing gradient problem (Sak et al., 2014). This 

makes LSTM an ideal architecture for problems that require the 

examination of long-term dependencies. 

 

Since the gates cannot get any information from the memory 

cell output when the output gate is closed, the LSTM does not 

know how long the memory should be for the model. To resolve 

this problem, peephole connections can be added to the LSTM 

memory cells. Working as an immediate supervisor, peephole 

connections make it possible for all the gates to inspect the cell 

states (Sutskever et al., 2014). Fig. 2 shows the architecture of a 

general LSTM memory block with peephole connections added. 

 

Figure 2. Long-Short Term Memory cell with peephole 

connections 

3.3 LSTM-based RNN Forecasting Scheme 

This paper uses an LSTM-based Recurrent Neural Network 

(RNN) scheme for forecasting product quality time series. 

LSTM is chosen for its advantages in time series forecasting, 

and the scheme utilizes peephole connections to enhance the 

LSTM's performance. The input time series 
1 2{ , , , }Tx x xx is 

transformed by the LSTM into two output time sequences: 

hidden state 
1 2{ , , , }Th h hh , and output 

1 2{ , , , }Ty y yy  through 

an iterative process. The hidden state h represents the relevant 

information in the input sequence x to make predictions y. 

Specifically, the states of the memory cells are updated using 

the following procedure. 

 

First, as shown in Fig. 2, the forget gate is applied to help the 

LSTM to decide what information to throw away from the cell 

state. The function (.) is generally a sigmoid used to calculate 

the activation of the forget gate as 

 

1 1( )t fx t fh t fc t ff W x W h W c b    (6) 

 

The output 
tf  of equation (6) is a value between 0 and 1 

corresponding to the last cell state 1tc . The value 0 means 

forgetting the last state completely, while the value 1 stands for 

keeping the last state completely. 

 

Next, we need to let the LSTM know what new information is 

going to be stored in the new cell state. To begin with, the LSTM 

uses a sigmoid layer, which is named the input gate layer ti , 

where 

 

1 1( )t ix t ih t ic t if W x W h W c b    (7) 

 

to decide what information to update. The tanh layer (.)



constructs a vector 
tu to store the new candidate values to be 

added to the new cell state as 

 

1( )t cx t ch t cu W x W h b   (8) 

 

Then, the old cell state 
1tc is updated to a new cell state 

tc with 

the estimated 
tf and

tu . Specifically, the old cell state is 

multiplied with 
tf  in order to forget information from the last 

state. The candidate values are multiplied with the input gate 

layer to decide how much new information to be updated to the 

new cell state, which gives 

 

1t t t t tc u i c f    (9) 

 

Another sigmoid layer (.) is then used as the output gate to 

filter and output the cell state as 
to , where 

 

1 1( )t ox t oh t oc t oo W x W h W c b  (10) 

 

Furthermore, a cell output tanh activation function (.)  is 

applied over the cell state, which is then multiplied by the output 

to  to give the desired information 

 

( )t t th o c       (11) 

 

As for the output of the memory block, an output activation 

function (.)k is used, i.e, 

 

( )t yh t yy k W h b    (12) 

 

In (6 - 12), the matrices 
ixW , 

fxW , 
oxW , 

cxW  are the appropriate 

input weight matrices, 
ihW , 

fhW , 
ohW , 

chW  are the recurrent 

weight matrices, 
yhW  represents the hidden output weight 

matrix, 
icW , 

fcW , 
ocW  denote the weight matrices of peephole 

connections. The vectors
ib ,

fb ,
ob ,

cb are the corresponding bias 

vectors. 

4 EXPERIMENT EVALUATION 

4.1 Experiment setup 

In this section, we conduct experiments to evaluate the 

effectiveness of using LSTM-based RNNs for forecasting 

product quality. We compare the performance of our proposed 

LSTM-based RNN scheme against several other methods: the 

SARIMA model, which is a Seasonal Autoregressive Integrated 

Moving Average model; the SVR model, which is a widely used 

model in financial time series forecasting; and CNN, which is a 

Convolutional Neural Network model. We use two evaluation 

metrics to measure performance: root mean square error 

(RMSE) and mean absolute percentage error (MAPE) and R2 

score which is calculated by comparing the forecasting results 

𝑦̂ = {𝑦̂1, 𝑦̂2, . . . , 𝑦̂𝐻} to the actual values 𝑦 = {𝑦1, 𝑦2 , . . . , 𝑦𝐻}. 

Specifically, 

 

𝑅𝑀𝑆𝐸 = √
1

𝐻
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝐻

1

                          (13) 

 

𝑀𝐴𝑃𝐸 =
100%

𝐻
 ∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖

|

𝐻

1

                      (14) 

In order to quantify the proportion of variance in the target that 

is explained by the forecasting methods, we also consider the R2 

index: 

𝑅2 = 1 −
∑(𝑦𝑖 − 𝑦̂𝑖)

2

∑(𝑦𝑖 − 𝑦̅)2
,                       (15) 

 

Where H is the forecasting horizon and 𝑦̅ is the mean value of 

1 2, ,..., Hy y yy . To ensure fairness in the comparison, we 

evaluated the performance of the LSTM-based RNN scheme 

against other methods using two different datasets: a product 

quality dataset sourced from Kaggle and a widely used airline 

passenger dataset. The airline passenger dataset includes 144 

observations spanning 12 years and displays a clear upward 

trend and strong seasonal fluctuations, making it useful for 

assessing the scheme's ability to predict short time series with 

multiple seasonal patterns. 

 

In our research, data was gathered from the quality control 

process of a roasting machine. The machine is composed of five 

identical chambers, each with three temperature sensors. The 

data also includes readings of the height and moisture content 

of the raw materials at the time of entry into the machine. The 

raw materials take one hour to pass through the kiln. The quality 

of the final product is evaluated in the lab by taking samples 

every hour, which is given a score between 200 and 500, with 

higher scores indicating better quality. The dataset of product 

quality has 744 observations over 31 days and exhibits distinct 

variations in quality characteristics. 

4.2 Experiment Results with the Airline Data Set 

In this study, we used a forecasting horizon of 12 for 

experiments on the international airline passenger dataset. From 

the results shown in Fig. 3 and Fig. 4, it can be observed that all 

four methods were able to capture the upper trend and seasonal 

patterns to varying degrees. However, it was found that LSTM, 

CNN, and SARIMA performed better than SVR, as reflected in 

their smaller root mean square error (RMSE) and mean absolute 

percentage error (MAPE) values in Table 1.  The CNN model is 

the best model with the capability to explain the proportion of 

variance in the target because of the highest R2 score (Shown in 

Fig. 5). 

 

 

Figure 3. Comparison of the results for the international 

airline passenger data set both within and outside of the 

sample 

 



 

Figure 4. Comparison of forecasting performance for the 

international airline passenger data set.  

 

 

 Figure 5. Predicted and actual value of the forecasting 

methods for international airline passenger data set. 

 

Table 1. Forecasting RMSE, MAPE, and R2 scores for the 

Airline Passenger Data Set 

Forecasting method RMSE MAPE R2 

SVR 0.1565 0.1749 0.0970 

SARIMA 0.1393 0.1703 0.0499 

CNN 0.1659 0.1921 0.5184 

LSTM 0.1059 0.1509 0.4508 

 

4.3 Experiment Results with the Product Quality Data Set 

In our experiments, we utilized 720 observations of product 

quality data to predict future quality over a 24-step horizon. This 

means we used the product quality data of the previous 30 days 

to forecast the quality of the following day. As shown in Fig. 5, 

the product-quality-score time series is more complicated 

compared to the airline passenger time series, lacking any 

discernible seasonal patterns or trends. This non-stationarity and 

non-seasonality present difficulties for conventional forecasting 

methods. Additionally, the longer forecasting horizon of 24 

steps makes accurate predictions even more challenging. 

 

 

 

 

Table 2. RMSE, MAPE, and R2 score results for the 

Product Quality Data Set 

Forecasting method RMSE MAPE R2 

SVR 0.1660 0.2220 0.2650 

SARIMA 0.1918 0.3550 0.1227 

CNN 0.1509 0.1820 0.4640 

LSTM 0.1280 0.2320 0.2261 

 

 

Figure 6. Comparison of in-sample and out-of-sample 

performance for the product quality dataset 

The results of the experiments on the product quality data set, 

as shown in Fig. 5, indicate that LSTM performed well in 

comparison to the original time series. Fig. 6 further highlights 

that LSTM outperformed the other methods by producing the 

most accurate forecast. Table 2 confirms this, with LSTM 

having the smallest forecasting errors. In the complex scenario 

of forecasting product quality, the performance of the other four 

methods was generally inadequate. The CNN method was able 

to capture the general trend of the real-time series, but the 

forecasted results were inaccurate and resulted in large RMSE 

and MAPE errors. The SARIMA method was not successful in 

this extended horizon forecasting problem due to the non-

stationarity and non-seasonality of the product quality time 

series. Furthermore, the CNN model is the best model with the 

capability to explain the proportion of variance in the target 

because of the highest R2 score (Shown in Fig. 8). 

 

Figure 7. Comparison of forecasting results for the product 

quality data set. 



 

Figure 8. Predicted and actual value of the forecasting 

methods for international airline passenger data set. 

5 CONCLUSIONS 

In summary, this study suggests the implementation of a Long-

Short-Term-Memory (LSTM) based Recurrent Neural Network 

(RNN) to effectively forecast short-term product quality. By 

utilizing, the long-term dependencies present in the time series 

data, LSTM proves to be capable of accurately predicting 

complex and non-stationary product quality patterns. The 

proposed method was tested using both a benchmark 

international airline passenger dataset and a more 

comprehensive product quality roasting process dataset, with 

results demonstrating its superiority over traditional forecasting 

techniques in the challenging task of forecasting short-term 

product quality. 
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