
 

Résumé – Dans le système actuel de manutention de matériel (MHS), la planification de trajectoire des robots mobiles autonomes 

(AMRs) repose uniquement sur la géométrie de l'espace de configuration, ce qui réduit les performances opérationnelles en milieu 

dynamique. Ainsi, plusieurs facteurs peuvent affecter l'efficacité de la navigation, notamment les sujets dynamiques opérants dans 

l’environnement partagé tels que les risques de collision et les conflits de navigation, ou les sémantiques statiques, tels que la friction 

et les pentes du sol. La prise en compte de ces aspects qui décrivent l'activité dans l’environnement opérationnel permet d'adapter 

la trajectoire à prendre ainsi que le mouvement de manière efficace. Cet article propose une architecture décentralisée pour identifier 

et partager les données liées à l'environnement entre les différentes plateformes. Les risques de collision non sécurisés auxquels est 

confronté chaque AMR sont modélisés à l'aide de la distribution par noyau et envoyés au serveur SGV-System sous forme de 

couche sémantique à fusionner en conséquence. Ensuite, la cartographie globale multi-couches résultante est publiée sur toutes les 

plateformes mobiles à des fins de planification de trajectoire. Une simulation est réalisée pour évaluer la méthode proposée en la 

comparant aux techniques de planification les plus récentes. Les résultats montrent l'efficacité de la méthode de navigation proposée. 

 

Mots clés – Navigation autonome, efficacité énergétique, Véhicule Autoguidé, planification de la trajectoire. 

 

Abstract – In the current Material Handling System (MHS), Autonomous Mobile Robots (AMRs) path planning relies solely on 

the geometry of the configuration space, resulting in lower operating performances in a dynamic environment. Thus, several factors 

may affect the efficiency of navigation, this includes the dynamic subjects operating within the shared environment such as collision 

risks and navigation conflicts, or static semantics such as floor friction and floor slopes. Considering these aspects that describe the 

dynamic activity within the operating environment allows to adapt the motion accordingly. This paper proposes a decentralized 

architecture to share the different static and dynamic semantic information related to navigation conflicts. Unsafe collision risks 

confronted by each AMR are modeled using kernel distributions and sent to the SGV-System Server as a semantic layer to be 

merged accordingly. Then, the resulting multi-layered global costmap is published to the mobile platforms in order to be used for 

path planning purposes The simulation is conducted to evaluate the proposed method while comparing with the state-of-the-art 

planning techniques. The results show the effectiveness of the proposed navigation method. 

 

Keywords – Autonomous navigation, energy efficiency, Autonomous Mobile Robot, trajectory planning. 

 

 
1 INTRODUCTION 

Manufacturing is and has always been a significant part of the 

global economy. The World Bank Group reported in 2021 that 

the manufacturing sector constitutes 17% of the world’s gross 

domestic product (GDP) (World Bank national accounts data). 

With the advent of automated machinery, high-scale 

manufacturing has been possible. Nevertheless, the rigid classical 

computer-aided systems are lagging, unable to meet modern 

demands. This is primarily due to the growing and varying 

requirements on production and manufacturing services over 

recent decades. Furthermore, mega-warehouses have taken shape 

lately as e-commerce has boomed (Boysen et al., 2019). Whether 

for storing raw materials for the production unit, or finished 

products intended for retailing, warehouse logistics have reached 

an unprecedented complexity and size. Therefore, carrying loads 

between different storage areas hundreds of meters need to be 

traveled safely and efficiently.  

Automated freight solutions had been already introduced in 

industries and warehouses to improve intralogistics since the mid-

twentieth century. Automated Guided Vehicles (AGVs) are used 

to automatize material handling tasks. However, these systems 

are inflexible and may lead to potential fleet deadlocks (Makris, 

2021; Qi et al., 2018). As technologies regarding theonomous 

mobile navigation are at their culmination point, extensive works 

have emerged for material handling purposes (De Ryck et al., 

2020). Autonomous Mobile Robots (AMRs) or also known as 

Self-Guided Vehicles (SGVs) are autonomous laser-guided 

mobile platforms that effectively enable their deployment on a 

larger scale compared to the previous generation platforms. Their 

ability to navigate autonomously in free spaces is a key enabler to 
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increase the number of completed tasks despite workload 

complexity (Graba et al., 2020). 

As Reconfigurable Manufacturing Systems (RMS) requires 

highly efficient and flexible indoor transportation of goods, 

AMRs require traveling long distance, carrying large loads, and 

dynamically interacting with their environments. Nevertheless, 

AMRs are battery power systems whose energy autonomy is yet 

a factor that limits the self-sufficiency of the MHS. Although 

these mobile platforms are required to process continuously for 

several hours, the battery source remains one of the main 

constraints for service durability (Graba et al., 2020). 

The backbone of autonomous motion is path planning, and it is 

divided into two main parts, global and local planning. Global 

planner produces a geometric path from the actual node to the 

destination node considering the static obstacles known a priori, 

and the local path execution takes as input the global path and 

progressively generates motion that considers possible dynamic 

obstacles. However, the limits of such an approach were 

particularly highlighted in multi-vehicular scenarios. In a 

decentralized SGV-System, each vehicle independently generates 

global trajectories. As the AMRs fleet operates in shared dynamic 

indoor space, it is most likely that a vehicle encounters conflict 

while traveling to its destination, as shown in Figure 1. 

Consequently, to ensure that the AMR reaches its destination 

efficiently while avoiding collision, both planners have 

complementary roles. However, modern MHSs have become 

increasingly complex and large, as a result, the ability to plan 

efficient paths is crucial for safely and efficiently traveling long 

distances in a dynamic environment while transporting loads 

(Mohammadpour et al., 2022). In addition, AMRs must contend 

with continuous environment changes. Therefore, from an 

autonomous navigation standpoint, these dynamic changes can 

result in a conflict, wherein the AMR's operation is hindered by 

new static and dynamic obstacles (Lopez et al., 2017). 

The remainder of this paper is organized as follows. Section 

2 states the problem and gives the literature review. Section 3 

presents the methodology to reach the objective. Section 4 

provides the simulation to test the proposed algorithm. Finally, 

conclusions are drawn in Section 5. 

2 PROBLEM STATEMENT & LITERATURE REVIEW 

So far, state-of-the-art of autonomous mobile navigation has 

focused on smooth criteria of motion. Recent works have shown 

the limited performances of the actual global path design and 

local path execution, where, the inefficiency has been particularly 

highlighted in multi-robot scenarios (De Ryck et al., 2020; 

Fragapane et al., 2021; Graba et al., 2020; Patle et al., 2019). As 

a heterogenous AMR fleet operates in shared indoor space, it is 

most likely that these platforms avoid each other with motions 

generated by the local planner. However, highly dynamic motions 

due to acceleration and rotation are very demanding in terms of 

power and battery effort (contributing to fast battery degradation), 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2. Multi-Layer framework with static and dynamic semantics definition. 

 
 
 
 
 
 
 
 

 

Figure 1. Material Handling System for 

Reconfigurable Manufacturing System. 



mainly in the case where heavy loads are transported (Meißner & 

Massalski, 2020). Therefore, as an assumption in this paper, 

limiting these efforts would improve the navigation efficiency 

and the long-term energy consumption of the overall fleet system. 

When an unexpected change occurs in the configuration space 

or an unforeseen obstacle arises, the AMR must suddenly 

decelerate or brake to a complete stop in a particular area to avoid 

a collision. This is known as a conflict, as illustrated in Figure 3. 

Conflict avoidance approaches require local coordination 

between AMRs when a conflict is imminent. Dynamic online 

obstacle avoidance is the simplest example of this technique 

(Chakravarthy & Ghose, 1998; Dong et al., 2021). Time Elastic 

Band (TEB) is a robust local path planner with obstacle avoidance 

capabilities (Rösmann et al., 2017). However, when two or more 

AMRs are conflicting, TEB might be less effective as the conflict 

may just be shifted to an adjacent space when both try to avoid 

each other. Capelli et al. (2019) propose a method that interprets 

approaching obstacle intentions through motion legibility. In 

Rathi & Vadali (2021), intentional exchange via explicit 

communication is proposed to determine "who goes first". Recent 

learning-based approaches (Wang et al., 2021; Xiao et al., 2020; 

Xu et al., 2020) have been studied to address the real-time tuning 

of planner parameters such as speed and acceleration. However, 

end-to-end learning approaches are data-intensive, requiring 

hours of training data from expert demonstrations or trial-and-

error tests. Furthermore, learning-based methods often lack safety 

and explainability, which are essential features for AMR 

operating in environments such as warehouses with countless 

potential scenarios. 

Motions failures and systemic replanning are the bottlenecks in 

an SGV-system, implying a cost-ineffective navigation, 

especially when the environment is dynamic and cluttered. 

Different conflict detection and resolution attempts have been 

proposed in the literature. The proactive approaches described 

previously have shown their capacity to deconflict complex 

scenarios. However, to the extent of our knowledge, the energy 

efficiency of these strategies, and their effect on battery 

degradation is overlooked in the literature.  

3 PROPOSED METHOD 

Although a fleet of AMRs enables system scalability and 

flexibility, on the other hand, they may suffer from a lack of data 

from the operating environment. As SGV-System Server may 

involve several heterogeneous types of AMRs, the path 

planning strategies required for each platform are challenging 

due to the versatility of the manufacturing environment. 

To provide adaptive navigation to the fleet, a platform-

independent framework is proposed in this paper, in order to 

incorporate different semantics data as a costmap layer that will 

adapt the planning performance. We can classify the semantic 

information of the manufacturing environment into two 

categories, non-probabilistic and probabilistic. The non-

probabilistic semantic is information that is static and 

characterizes an aspect of the environment such as the sloped 

floor, rolling resistance…etc. On the other hand, probabilistic 

semantics is event-related information from the dynamics of the 

environment that affects the navigation performances of one or 

several AMRs for instance the reconfigurability of the 

manufacturing space, or collision risks. Once the semantic data 

are processed by the SGV-system server, the data represented in 

the costmap layer are implemented in ROS (Robot Operating 

System) in which these static and dynamic semantics are 

modeled. The data type considered in this paper is collision 

risks. Figure 2 shows the proposed framework that considers 

semantic data. 

3.1 SGV-System Server: 

In the proposed decentralized paradigm, the SGV-system 

server is data-centric, as illustrated in Figure 4. In other words, 

any operating AMR can be a data publisher and data subscriber 

to the SGV-system server (Jeong et al., 2022). When an AMR 

characterizes a type of semantic, in our case collision risks, the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Figure 4. (a) Classical AGV-System architecture (b) 

Proposed SGV-System architecture  

 

 
 
 
 
 
 
 
 

 
 

Figure 3. Collision risks scenarios of two Self-Guided 

Vehicles. 



resulting data is sent to the SGV-system server. After collecting 

different semantics, the server processes them by merging 

different data in accordance with the type and location. Then, a 

global multilayer costmap is generated and dispatched to all 

mobile platforms. This makes the burden of explicit 

communication between the AMRs much more efficient, as 

different data types can be exchanged between the latter.  

3.2 Data merger:  

To process data from different mobile platforms, we used the 

kernel merging method proposed by (Zhou et al., 2003). The 

kernel estimation module aims at providing the quantification 

of the severity of the collision-risk over the configuration space. 

This is modeled by collecting the collision_risk trigger provided 

by the local planner of the AMR in different locations the kernel 

function 𝐾 is a nonparametric technique generates normal 

distribution based on observation for every AMRs, as shown in 

Figure 6. The normal kernel is chosen based on a decreasing 

speed profile when braking safely and smoothly. As the 

estimation involves spatial data, the formulation of the data 

merger is defined using the following equation:  
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where 𝑓(𝑥) is merged density estimation that corresponds to 

n sample points; 𝐾 is a kernel function with bandwidth ℎ ; 𝑠𝑖 is 

the 𝑖𝑡ℎ dataset sample from different AMRs; 𝑤𝑖  is the 

corresponding weight observed collision risk, and 𝜎̂ is the 

standard deviation n sample points.  

3.3 Global Costmap: 

The costmap is a representation of the configuration space 

that consists of discrete cells with a grayscale value, used to 

calculate minimum motion cost in global and local path 

planning algorithms. Lu et al. (2014) proposed the layered 

costmap to organize the configuration space into a list of 

ordered layers that describe specific functionalities of the 

environment. The primary layer is the static map, which is built 

using the Simultaneous Localization And Mapping (SLAM) 

algorithm (Bailey & Durrant-Whyte, 2006) and represents the 

static obstacles and walls. Additional layers are introduced as 

ROS plugins, such as the inflation layer that adds a buffer 

distance from obstacles. These plugins are combined with the 

static map layer to create a multi-layered global costmap. The 

paper aims to avoid collision risk for Autonomous Mobile 

Robots (AMRs) and incorporates a merged semantic layer into 

the global costmap, which is shared amongst AMRs to enable 

each mobile platform to generate collision-free paths. 

4 SIMULATION 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Dataflow of between the SGV and the SGV-System Server 

 

 

 

 

 

 

 

 

 

  

Figure 6. Data merge of kernel densities of collision risks 

collected from different SGVs. 



4.1 Simulation Setup: 

In this section, we detail the simulation process used to assess 

the proposed approach in the open-source ROS-Gazebo 

simulation environment (see Figure 5). The simulation includes 

two model-based Autonomous Mobile Robots (AMRs), SGV1 

and SGV2, deployed in a 3D indoor warehouse-like 

environment. The environment also includes four dynamic 

objects, two pedestrians, and two forklifts, moving within the 

configuration space, as shown in Figure 7. Conflict scenarios 

are created by the inclusion of narrow areas such as corridors 

and blind zones like corners, as illustrated in Figure 3. Laser 

scanners are used in both the simulation and experimental tests 

and the map is constructed using the SLAM algorithm (Bailey 

& Durrant-Whyte, 2006) before the navigation tests. 

The navigation algorithms are implemented using ROS and 

the navigation stack framework. The two-stage navigation 

approach is used, with the A* global planner (Tang et al., 2021) 

searching for the geometrical path to the next station while 

considering the known static obstacles. The Time Elastic Band 

(TEB) is then used as the local planner to generate optimal 

motion to follow the planned global trajectory (Rösmann et al., 

2015). 

A pair of Sick MicroScan laser scanners models are used, 

placed in a 360° configuration with a range of up to 40 meters. 

However, for this paper's scope, and to minimize sensor data 

volume and uncertainties, the look-ahead perception distance is 

limited to 5 meters from the SGV. 

The TEB is configured to keep the AMRs away from 

obstacles while moving along the global path. The linear speed 

and angular speed of the autonomous platforms are set to 1.0 

m/s and 0.8 rad/s, respectively, while the maximum linear and 

angular accelerations are set to 0.5 m/s2 and 0.6 rad/s2, 

respectively. 

Both SGV1 and SGV2 share the configuration space 

simultaneously, and a 0.5 m inflation layer is set from all known 

static obstacles for safety purposes. SGV1 is assigned to go from 

station S1→S2→S3→S4→S1 repeatedly, while SGV2 is 

assigned to S4→S1→S2→S3→S4 repeatedly as well. We 

define a completed cycle when all stations are visited. In all 

simulations, the platforms transport a constant 50 Kg package 

to simulate a real-world scenario. 

The SGVs must avoid the randomly deployed dynamic 

obstacles in the environment, including the forklifts and the 

pedestrians, while also confronting each other. The pedestrians 

are walking in a dedicated zone not specified in the costmap to 

create a realistic scenario, while the forklifts operate randomly. 

The forklifts' and pedestrians' velocities are set to 0.8 and 0.5 

m/s, respectively. 

The simulation is conducted for 6 hours, and the collision 

risks are recorded using the Time-to-Collision index (Bosnak & 

Skrjanc, 2017). The performance metrics used to support the 

contribution are the average consumed energy per cycle, the 

average path execution time per cycle, and the percentage of 

critical failures. We define failure as when the vehicle is stuck 

in a particular position or takes more than the required time to 

arrive at the next station. 

4.2 Simulation results: 

During the six-hour simulation in an MHS warehouse, the 

SGVs were assigned to follow a specific path. Figure 8 

illustrates the expected trajectory before and after incorporating 

the semantic layer that considers potential collision risks. It was 

noted that the estimate of collision risks remained stable after 

the fourth hour, as most of the critical collision risks were 

defined in the configuration space. Table 1 compares the 

navigation performances of SGV1 and SGV2 before and after 

the addition of the semantic layer. The proposed implementation 

reduced the average execution time per cycle by 10% for SGV1 

and 8.1% for SGV2. Furthermore, the capacity of the SGVs to 

move between stations quickly improved after adding the 

semantic layer to the master costmap. In addition, both SGVs 

showed better performance in reaching their destinations with 

low critical brakes, resulting in a reduction of previously 

persistent collision risks by 40-43%. This reduced critical 

collision risk makes it safer and less likely to experience severe 

collisions while navigating dynamic obstacles such as 

unforeseen pedestrians. Finally, Table 1 also shows that the 

average energy consumed was reduced by up to 13% for both 

vehicles over the entire duration of the simulation.  
 
Tableau 1. Interstation navigation performance of the two 

vehicles 

Paths S1→S2→S3→S4→S1 

Efficie

ncy 

(%) 

Cost Map 

Original 

Global 

Costmap 

Global 

Costmap 

+ Semantic Layer 

Tests SGV1-1 SGV2-1 SGV1-2 SGV2-2 

Average 

time (s) 
162.1 166.9 147.0 153.3 9.3 % 

Critical 

Failure 

(%) 

23.2 24.6 14.5 13.9 43% 

Energy 

Consump. 

(KJ) 

31.7 32.1 27.8 28.9 
12.3

% 

 

Figure 7. 3D simulated environment in Gazebo.  
 



5 CONCLUSION & PERSPECTIVE 

As several AMR may navigate in cluttered spaces, dynamic 

obstacles can unsafely deteriorate the operation performances.  

Global trajectory design has a major role in increasing the 

performance of navigation in a dynamic environment. In this 

study, we proposed a new methodology to model the different 

collision risks encountered by the AMR fleet over the 

configuration space. The model is then represented as a global 

costmap to be considered at the global trajectory design level. 

This method is tested in a simulated environment with different 

types of dynamic obstacles. The results have demonstrated a 

significant increase in the smoothness of the executed trajectory, 

which limits the maximum power required by the AMR to reach 

its destination. Thus, the hypothesis is confirmed as the total 

energy consumption is lower than when using geometric 

planning by up to 12%, although the AMR travels a longer 

distance when avoiding conflict areas. Another aspect of the 

application is the execution time, as solving conflicts are often 

time-consuming avoiding collision risk area that fastens the task 

execution. In perspective, it is important to test the algorithm in 

a larger space “megawarehouses” in which a larger number of 

heterogenous AMRs are operating with other dynamic subjects.  
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