
 
Résumé – La prédiction de la consommation de carburant des navires est un élément clé pour l'industrie du transport 

maritime pour se conformer aux réglementations de l'Organisation Maritime Internationale sur les émissions. Cette étude 

propose deux approches visant à prédire la consommation de carburant des vraquiers en se basant sur les données 

historiques des voyages et de la météo en plus des caractéristiques physiques des navires. Les résultats obtenus montrent 

que les modèles ont pu prédire une proportion significative de voyages avec un pourcentage d'erreur inférieur à 5% lorsque 

l'on compare la consommation totale de carburant réelle et prédite tout au long de chaque voyage. Les approches proposées 

permettront de prédire avec précision la consommation de carburant pour une meilleure planification des itinéraires des 

navires. 

Abstract – Predicting the fuel consumption of ships is a key element for the shipping industry to comply with International 

Maritime Organisation regulations regarding emissions. This study proposes two approaches to predict the fuel 

consumption of bulk carriers based on historical voyages, weather data and physical characteristics of ships. The results 

obtained show that the models were able to predict a significant proportion of voyages with an error percentage lower than 

5% when comparing actual and predicted total fuel consumption throughout each voyage. The proposed approaches could 

accurately predict the fuel consumption for a better planning of the routes of the ships. 

 

Mots clés - Routage météorologique, navires vraquiers, consommation de carburant, apprentissage automatique. 

Keywords – Weather routing, bulk carriers, fuel consumption, machine learning. 
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1 INTRODUCTION 

The climate question is in the spotlight every day around the 

world. Today, the effects of climate change are becoming more 

apparent, such as rising average and extreme temperatures, 

altered precipitation patterns, thawing permafrost, and increased 

frequency of severe weather events. While maritime 

transportation is generally considered a cleaner mode of 

transportation compared to other modes, it is also facing 

increasing pressure to reduce its greenhouse gas (GHG) 

emissions.  

Since 2018, the International Maritime Organization (IMO) has 

adopted a strategy to reduce GHG emissions from ships at its 

Marine Environment Protection Committee. This strategy aims 

to decrease the carbon intensity of international maritime 

transportation by at least 40% by 2030, compared to levels in 

2008, and to lower total annual GHG emissions by at least 50% 

by 2050, also compared to 2008 levels [International Maritime 

Organization, 2018]. As part of this strategy, and since January 

2020, a new regulation has been imposed reducing the limit of 

sulfur content in fuel oil from 3.5% to 0.5%. The IMO's GHG 

strategy establishes a timeline and framework for deciding when 

to consider various policies, and includes a list of potential 

short-, medium-, and long-term policy measures. The proposed 

measures can be divided into three categories: technological 

measures, operational measures, and market-based measures.  

The Ship Energy Efficiency Management Plan (SEEMP) 

proposed by the IMO as an operational measure offers several 

features for optimizing fuel efficiency through operational 

changes. One of the key features of this management plan is the 

ship weather routing. This is defined by [Simonsen et al, 2015] 

as the process of determining the optimal course and speed for 

a ship's voyage based on various factors including nautical 

charts, forecasted sea conditions, the captain's expertise, and the 

specific characteristics of the ship. The use of weather routing 

has been shown to reduce fuel consumption by up to 3% 

[Armstrong, 2013] and, therefore, reduce CHG emissions, as it 

helps to identify the most efficient speed for a voyage, which 

can minimize fuel consumption, improve energy efficiency, and 

ensure the safety of the ship, crew, and cargo. Effective fuel 

consumption management is a crucial part of this process, as 

fuel costs make up a significant portion of a ship's operating 

expenses [World Shipping Council, 2008]. Reducing fuel 

consumption can lower operating costs and increase the overall 

efficiency of the ship.  

A literature review by [Zis and al., 2020] has been conducted on 

weather routing and voyage optimization in maritime shipping. 

The authors provided a comprehensive overview of the main 

methodological approaches used in the field and identified the 

key disciplines that address this problem. The review 

demonstrates that the majority of the studies in this area are 

focused on either minimizing fuel consumption or reducing 

sailing time. Among the 40 relevant works reviewed in this 

literature survey, only five studies ([Hagiwara, 1989], 

[Hagiwara and Spaans, 1987], [Kobayashi et al., 2011], [Prpić-

Oršić et al., 2014] and [Szlapczynska, 2015]) have taken into 

account ocean currents in addition to wind and waves when 

optimizing weather routing in maritime shipping. In order to 

minimize fuel consumption in the context of weather routing, it 

is necessary to have an estimation of its value beforehand, in 

addition to considering meteorological factors. This is difficult 

due to the different internal and external factors affecting this 

value and the absence of a linear relationship between all these 

factors. 

A recent literature review presented by [Fan et al., 2022] has 

covered research on ships' fuel consumption models (SFC) 

published between 2011 and 2021. This literature review 

classified SFC models into three categories: the white box 

model (WBM), the black box model (BBM) based on data 

analysis, and the grey box model (GBM). The WBMs are based 

on mechanism analysis, in which fuel consumption is essentially 

modeled according to the principle of the ship-engine-propeller 

and the law of resistance transfer ([Yan et al., 2021]). The BBMs 

are statistical and machine learning models that require a large 

amount of data to capture the relationship between fuel 

consumption and the rest of the available factors.  The most 

accurate Statistics-based models for predicting fuel 

consumption, according to [Uyanik et al., 2020], are Bayesian 

ridge regression, nuclear ridge regression, multiple regression, 

and ridge regression. The last type is GBMs, which combine 

WBMs and BBMs through a semi-mechanical formula and 

semi-data-driven model. This review of literature has brought 

attention to areas where research on fuel consumption 

prediction is lacking. Out of the 24 articles that were analyzed, 

only [Tran, 2021], [Isıklı et al., 2020], and [Fan et al., 2020] 

focused on bulk carriers while the rest were centered on 

container ships. Additionally, the fuel consumption prediction 

models developed in these three articles are limited to a single 

ship, and only [Fan et al., 2020] accounted for meteorological 

factors that have a significant impact on fuel consumption. 

Therefore, the models that have been developed are not 

applicable to diverse ship types operating in varied weather 

conditions. 

The aim of this study is to contribute to this research gap by 

proposing predictive models of fuel consumption that are not 

reliant on data from a single ship, but rather on a large dataset 

comprising of 1254 ships of various physical characteristics, 

with a specific focus on bulk carriers. The proposed models will 

be integrated into a commercial weather routing system to 

optimize ship routing, not only in terms of cost and time of 

arrival, but also taking into account safety, emissions, and 

weather considerations. This research will propose a multiple 

linear regression (MLR) model and a mathematical model for 

predicting ship fuel consumption, which will be constructed 

using historical voyage data, weather data, and vessel 

characteristics data.  

The structure of this paper is as follows. Section 2 describes the 

proposed methodology, which includes the problem 

formulation, data preprocessing, and proposed models. Section 

3 presents a summary of the results obtained from the study. 

Finally, the conclusion of the paper is conducted in Section 4. 

2 METHODOLOGY 

The methodology (Figure 1) of this study includes the following 

main steps: 

• Problem formulation: We present the problem and the 

research objective in this step. 

• Data understanding: We provide an overview of the 

main parameters and data sources in this stage. 

• Data preprocessing: We clean and transformed the raw 

data to make it suitable for analysis and modeling. 

• Modeling: We present the models proposed, including 

the input parameters. 

• Evaluation: We evaluate the models based on their 

errors per voyage and across the entire dataset. 

 

2.1 Problem formulation 

Accurately predicting fuel consumption is a significant 

challenge in the shipping industry, as it is influenced by a 



variety of internal and external factors. Our study is based on 

data collected by our industrial partner from the so-called noon-

reports. The ship captains send these reports every 24 hours with 

information on the status of the ship, including the remaining 

fuel level and speed. In addition, our data contains weather 

reports on meteorological conditions reported every 6 hours.  

Our objective is to use this information to develop models that 

take into account not only the speed of the vessel but also the 

weather conditions, the differences in the frequency of noon-

reports and weather reports, and the different physical 

characteristics of the ships. 

2.2 Data description 

The present study is mainly based on historical voyages for the 

development of fuel consumption prediction models. At each 

point of the voyage of a given vessel, we have data on the 

identification of the vessel, its location, its speed over ground 

(SOG), its speed over water (SOW), the revolutions per minute 

(RPM) of the engine and the remaining level of each type of 

fuel: Intermediate Fuel Oil (IFO) and Marine gas oil (MGO). In 

addition, our data contains the direction and the speed/height of 

the wind, waves and currents at each point of the passage. From 

these, our industrial partner's analysts calculate the resulting 

speed loss for each meteorological component based on it’s 

added resistance [Kim et al, 2017]. This speed loss will combine  

the meteorological information, the speed and the type of vessel 

into a single value that we denote by the wind/wave/current 

factor. 

2.3 Data preprocessing 

2.3.1 Data cleaning 

Data cleaning is a crucial step that significantly impacts data 

analysis and prediction models. In this study, we followed a 

two-step approach for data cleaning. Firstly, we removed null 

values from the fuel consumption data, as ships are expected to 

always consume fuel during voyages. Additionally, we 

employed a commonly used statistical method for the 

identification and removal of outliers which is the z-score 

outlier detection. This technique calculates the deviation of each 

point in the dataset from the mean according to the following 

relationship: 

 

𝑧 =
𝑥 −  𝜇

𝜎
   

 

Where x is the data point, μ is the mean of the dataset, and σ is 

the standard deviation of the dataset. Outliers are defined as data 

points whose z-score exceeds a predetermined threshold. In our 

study, we used a threshold of 3, which corresponds to data 

points that are three standard deviations away from the mean of 

the dataset. By using this threshold, we identified only extreme 

values as outliers, in accordance with commonly used practices 

in the field of statistics and data analysis. 

In addition to the outliers, it is necessary to detect voyages with 

abnormal or unexplainable behavior (Figure 2). For this, we 

referred to a classical relationship often used in the literature 

[Bialystocki and Konovessis, 2016]. This relation links the 

sailing speed (v) to the fuel consumption (F) through the 

exponent (n), that depends on the type of the vessel, and is 

expressed as follows: 

 

𝐹(𝑣) = λ𝑣𝑛  where  λ > 0, 𝑛 > 0, 
 

Several voyages were analyzed using this relation in addition to 

the knowledge of our industrial partner. Indeed, the training of 

this relationship on all our voyages showed some voyages with 

a negative coefficient λ and thus a non-conforming behavior 

since the fuel consumption and the speed follow the same trend. 

Other voyages with anomalous values of speed or fuel 

consumption at certain noon-reports were also detected. These 

detected voyages have been removed from our dataset for a 

better quality of modeling. 

The different methods used in the cleaning process affected 

approximately 12% of the voyages. While this may seem like a 

significant loss of data, it was necessary to ensure the accuracy 

and reliability of the remaining data for analysis and modeling. 

2.3.2 Feature scaling 

At this stage, we made a change that is necessary for our models 

later on. Indeed, since the features affecting the fuel 

consumption have different ranges of values, we chose to bring 

them all to a single range, between 0 and 1. This technique 

Figure 2 (Top): Voyage with a significant decrease in fuel 

consumption (blue) in the last 10 days and an outlier in 

RPM (red). Figure 2 (Down): Voyage with outliers in 

RPM and in fuel consumption 

Figure 1: Overview of the methodology 



commonly used in preprocessing is called the Min-Max scaling 

and performed according to the following relationship: 

 

𝑥𝑛 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 

 

where 𝑥𝑛 is the normalized value corresponding to the original 

variable 𝑥, with a minimum and maximum value of 𝑥𝑚𝑖𝑛  and 

𝑥𝑚𝑎𝑥, respectively. 

2.3.3 Feature engineering 

At the feature engineering phase, we transformed our data to 

prepare it to the modeling step. To achieve this, we created new 

features. The first feature is the daily fuel consumption that we 

calculated from the remaining level of each fuel type (IFO and 

MGO). Additionally, we added the average speed loss over 24h 

resulting from each one of the three meteorological components 

(wind, waves and currents). 

Moreover, since our study is based on developing a model that 

involves several bulk carriers, we proceeded to their 

categorization. Despite the fact that our study is focused on bulk 

carriers and that they have the same basic design and purpose, 

they do not have the same behavior during sailing and under 

different meteorological conditions. Therefore, we used scatter 

plots (Figure 3) to correlate RPM speed with daily fuel 

consumption, allowing us to identify distinct vessel categories 

based on similarities in behavior for each vessel size (Panamax, 

Post-Panamax…) as well as for each engine model. Vessels 

with similar behaviors were grouped together within the same 

category. 

2.4 Modeling 

2.4.1 Multiple linear regression models 

Our first proposal builds upon the work presented in [Hajli et 

al., 2023]. The later uses a multiple linear regression (MLR) 

model to address a similar issue as our current study. However, 

the predictions made by that paper are limited to a specific set 

of sister-ships with similar physical characteristics. Our 

objective is to extend these predictions to other types of bulk 

carriers. To accomplish this, we utilized the following 

relationship from [Hajli et al., 2023] to train our model on each 

category of bulk carriers: 

 
𝑃 = ∑ (𝛼𝑣 + 𝛽𝑣𝑆3)𝑣∈𝑉 + 𝛾1𝑊 + 𝛾2𝐴 + 𝛾3𝑇 + 𝜀                     (1)       

 

This relationship links the daily fuel consumption P to the RPM 

speed S of each vessel v, the average daily speed loss caused by 

wind W, waves A and currents T.                                                                    

The MLR model will fit the relationship (1) to data, minimize 

the error 𝜀, determine the regression coefficients 

𝛼𝑣 , 𝛽𝑣 , 𝛾1, 𝛾2 𝑎𝑛𝑑 𝛾3, and generate the estimated regression 

function 𝑓𝑐(𝑆, 𝑊, 𝐴, 𝑇) for each ship category c as follows: 

 

𝑓𝑐(𝑆, 𝑊, 𝐴, 𝑇) = ∑ (𝑤𝑣,𝑐 + 𝑢𝑣,𝑐𝑆𝑐
3)

𝑣∈Vc

+ δ1,𝑐𝑊 + δ2,𝑐𝐴

+ δ3,𝑐𝐶         (2) 

Where, 𝑤𝑣,𝑐 and 𝑢𝑣,𝑐 are estimated for each vessel v of each 

category c and represent the intercept and RPM weight, 

respectively. The estimated weights for winds, waves, and 

current factors for each category c are denoted as δ1,𝑐, 

δ2,𝑐 and  δ3,𝑐, respectively. 

The final estimated regression function to predict the daily fuel 

consumption is presented as follows: 

𝑓𝑐(𝑆, 𝑊, 𝐴, 𝑇) = 𝑤𝑐 + 𝑢𝑐 𝑆𝑐
3 + 𝛿1,c𝑊𝑐 + 𝛿2,c𝐴𝑐 + 𝛿3,c𝑇𝑐    (3) 

Where, for each category c, we have: 

𝑤𝑐 = 1

|Vc|
∑ 𝑤𝑣,𝑐v ∈ Vc

    and     𝑢𝑐 = 1

|Vc|
∑ 𝑢𝑣,𝑐v ∈ Vc

                                

2.4.2 Mathematical model 

Our study proposes a second fuel consumption prediction model 

that approximates the daily fuel consumption of bulk carriers. 

In this section, we define the set of parameters and decision 

variables defining this model. 

Let V be the set of voyages, I the set of noon-reports provided 

by captains of ships, 𝐼𝑣   the subset of noon-reports concerning 

the voyage v ∈ V and 𝐽𝑖 the set of weather reports in the noon-

report i ∈ 𝐼. Each noon-report i ∈ I contains information on the 

fuel consumption 𝑓𝑖 and the RPM speed 𝑆𝑖. Also, each weather 

report j ∈ J reports the speed loss caused by winds 𝑊𝑗 , by waves 

𝐴𝑗 and by currents 𝐶𝑗. 

We have used a number of variables in the formulation below. 

Specifically, 𝑥1, 𝑥2,  𝑥3, 𝑥4 and 𝑥5  that refers to the weights of 

the RPM speed, the speed loss by winds, the speed loss by waves 

and the speed loss by currents, respectively. We also define a 

slack variable 𝜖𝑣 for each voyage v ∈ V. The optimization model 

is then presented as follows: 

 

𝑀𝑖𝑛 ∑ ∑ (𝑓𝑖 − (∑[𝑥1𝑆𝑖
3 + 𝑥2𝑊𝑗 + 𝑥3𝐴𝑗 + 𝑥4𝑐𝑗]

1

|𝐽𝑖|
𝑗∈𝐽𝑖

))

2

𝑖∈𝐼𝑣𝑣∈𝑉

+ ∑ (
1

|𝐼𝑣|
𝑥5ϵ𝑣)

2

𝑣∈𝑉

 

    𝑆. 𝑡  
 

∑ 𝑓𝑖

𝑖∈𝐼𝑣

= ∑ ∑(𝑥1𝑆𝑖
3 + 𝑥2𝑊𝑗 + 𝑥3𝐴𝑗 + 𝑥4𝐶𝑗)

𝑗∈𝐽𝑖𝑖∈𝐼𝑣

+ 𝑥5ϵ𝑣  ,

∀𝑣 ∈ 𝑉 

 

The objective is to minimize the quadratic error between the 

actual fuel consumption per 24h and the approximated one for 

Figure 3: RPM and fuel consumption for each engine 

model and for each vessel size 



the entire voyage. The approximated fuel consumption is 

obtained by summing the RPM speed at each noon-report and 

each weather component at each weather report. We divide the 

sum by the number of weather reports to have one approximated 

fuel consumption. 

The constraint assures that the total real fuel consumption per 

voyage is equal to the approximated one or as close as possible. 

2.5 Evaluation 

In order to assess the accuracy of our predictions and validate 

our models, we relied on a set of performance measures often 

used in the literature, namely mean absolute error (MAE), root 

mean square error (RMSE), and mean absolute percentage error 

(MAPE). These types of errors were computed for each voyage 

in order to have insight into the distribution of errors over all 

voyages. 

3 RESULTS AND DISCUSSION 

Our study proposes two approaches to approximate fuel 

consumption of bulk carriers. The first is to train an MLR model 

for each category using average daily meteorological data as 

inputs. This results in a fuel consumption prediction equation 

for each category. The second proposal is a mathematical model 

that takes into account all the meteorological reports, subject to 

a constraint on the total fuel consumption for each voyage. This 

model can be trained on each category, but in the present study, 

we have chosen to train it on all categories together, due to the 

stability and strength of this kind of models. This approach gives 

a single fuel consumption prediction equation for all types of 

bulk carriers in the dataset. 

Our models were trained using a dataset of 7754 voyages sailed 

by 1 254 different bulk carriers. Once the appropriate weights 

for each feature were determined, the models were evaluated on 

a separate, independent test dataset of 1 275 voyages, sailed by 

535 different bulk carriers, that were not used during training. 

To assess the accuracy of the models, we calculated in the first 

place the MAE, RMSE and MAPE errors for each voyage in the 

test dataset. By plotting the distributions of these errors, we can 

visualize the spread of errors over all voyages. The test results 

of the MLR models (Figure 4) show that they were able to 

predict the fuel consumption of 85,6% of the voyages with a 

MAE error of less than six metric tons per day (MT/day) and 

84% of the voyages with a RMSE error of less than six MT/day. 

For the mathematical model, the test results (Figure 5) show that 

the fuel consumption of 84 % of the voyages was predicted with 

a MAE error of less than six MT/day and 82% of the voyages 

had the fuel consumption predicted with a RMSE error less than 

six MT/day. Regarding the MAPE error, the MLR models were 

able to predict 84.1% of the voyages with an error level below 

20%, while for the same rate, the mathematical model was able 

to predict 82% of the voyages. 

In addition to the MAE, RMSE and MAPE errors calculated for 

each voyage, the residuals (Figure 6) of the two approaches 

were calculated at the level of each point of the dataset, and thus 

at the level of the daily reports (noon-reports), according to the 

following relation: 

 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖 = 𝑓𝑖 − 𝑦𝑖̂    (4) 

 

where 𝑓𝑖  is the recorded fuel consumption at the point i and 𝑦𝑖̂ is 

the predicted fuel consumption at the same point. The 

distribution of the residuals from the noon-reports appears 

nearly symmetrical around zero for our models. Furthermore, 

by excluding outliers, the residuals between the reported and 

predicted daily fuel consumption are limited between -10 and 

+10 MT/day. However, the mathematical model's residual 

density is more focused around zero in comparison to the MLR 

models, highlighting the improvement that has been attained. 

Since the residuals of noon-reports for a given voyage can be 

negative or positive and thus cancel each other out for the entire 

voyage, it is important to consider the residuals between the 

total reported and predicted fuel consumption per day for each 

voyage which are calculated as follows: 

 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑣 = ∑(𝑓𝑖

𝑖∈𝐼𝑣

− 𝑦𝑖̂)     (5) 

 

where 𝑓𝑖  is the recorded fuel consumption at the noon-report i 

of the subset 𝐼𝑣  of noon-reports of the voyage v, and 𝑦𝑖̂ is the 

predicted fuel consumption at the same noon-report. Since the 

total fuel consumption for a given bulk carrier on two voyages 

can be different depending on several factors (duration of the 

voyage, weather conditions, captain's behaviour...), we have 

chosen to compute the percentage of residuals between the total 

reported and predicted consumption for each voyage v and not 

only the residuals of (5), according to the following relation: 

 

(𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙)  𝑣 = 100 ×
∑ (𝑓𝑖𝑖∈𝐼𝑣

− 𝑦𝑖̂) 

∑ 𝑓𝑖𝑖∈𝐼𝑣
 

    (6) 

 

The distribution of the error percentages (Figure 7) shows that 

76% of the voyages have an error level between the reported and 

Figure 4: The distribution of MAE, RMSE and MAPE 

errors of the MLR models for voyages.  

Figure 5: The distribution of MAE, RMSE and MAPE 

errors of the mathematical model for voyages.  



predicted total consumption that is lower than 5% for both 

approaches. The distribution of errors in percentage is nearly 

comparable between both methods, although the mathematical 

model has more voyages with a percentage error close to 0%. 

In our results, we presented the errors for the voyages and for 

the noon-reports of these voyages. The average MAE, RMSE, 

and MAPE errors calculated over all the noon-reports of each 

voyage in our dataset showed that the majority of voyages, on 

average, were well predicted (less than six MT/day and less than 

20% errors). Then, for each point in our dataset representing a 

noon-report, we presented the residuals between the actual and 

predicted values, giving a distribution of errors between -10 and 

+10 MT/day with more noon-reports concentrated around 0 

MT/day. Finally, for a standardized comparison between 

voyages, we presented the residuals between the total fuel 

consumption throughout each voyage and that predicted by the 

models as a percentage, which showed that a large number of 

voyages have an error percentage lower than 5%.  

Although the results of testing the models were similar for both 

approaches, the mathematical model performed better than the 

MLR models in terms of fuel consumption per noon-report and 

overall fuel consumption for each voyage. This proves first that 

the extension of the MLR model of [Hajli et al., 2023] was able 

to achieve good predictions for several categories of bulk 

carriers even when considering the average value of the 

meteorological factors on each noon-report. Secondly, an 

improvement of the results was observed in the case of the 

mathematical model since the latter considers all individual 

meteorological reports embedded in each noon-report and not 

an average value in addition to the constraint imposed on the 

total fuel consumption per voyage. 

Furthermore, the fuel consumption of a ship have a significant 

impact on its emissions. In fact, the amount of fuel consumed 

has a direct influence on the amount of emissions produced by 

the ship according to the following equation presented by 

[Trozzi, 2010]: 

 

𝐸𝑇𝑟𝑖𝑝,𝑖,𝑗,𝑚 =  ∑ (FCj,m,p×EFi,j,m,p)p      (7) 
 

In this equation, the emission over a complete trip (ETrip,i,j,m ) 

for a given pollutant (i), engine type (j), fuel type (m), and phase 

of the trip (p) is determined based on the fuel consumption 

(𝐹𝐶𝑗,𝑚,𝑝) and the emission factor (𝐸𝐹𝑖,𝑗,𝑚,𝑝)  

Integrating the proposed models into a vessel routing decision 

system would indeed improve voyage planning and reduce 

voyage costs by taking into account fuel consumption and 

emission levels under different weather conditions. 

4 CONCLUSION 

Maritime shipping is a sector that presents many challenges due 

to the number of the involved actors and the complexity of the 

operations that are interconnected. The environmental side adds 

to these challenges and requires more attention in view of the 

new IMO regulations and the targets it has set. 

Controlling fuel consumption is one of the important keys to 

reducing emissions from this sector. The present study proposed 

two approaches for the prediction of fuel consumption for bulk 

carriers. In both approaches, meteorological conditions were 

added as an important factor affecting the performance and the 

energy efficiency of ships during sailing. We first proposed an 

extension of a model, which only concerns sister-ships, to other 

bulk carriers with different physical characteristics and thus 

different behavior during voyages. Our second proposal 

addressed the same problem while taking into consideration the 

different timing frequencies of noon-reports and weather reports 

in addition to the total fuel consumption on each voyage. The 

training and testing were performed on a large dataset, which 

allowed a better learning of the variations of the fuel 

consumption under different meteorological conditions.  

Our study was able to accurately predict fuel consumption for 

the majority of voyages using an MLR model for each category 

of bulk carriers, and then further improved the predictions with 

a mathematical model, providing a single fuel consumption 

approximation for all categories in our dataset. However, further 

improvement is possible by including additional voyage 

information (Loading information, hull resistance, maintenance 

...) into the models. Additionally, the quality of the acquired data 

has a significant impact on the modeling process, thus 

increasing data quality and diversifying data sources can 

improve the predictions. Furthermore, our models were trained 

Figure 6: The density of the residuals in daily fuel 

consumption of the MLR models (blue) and the 

mathematical model (orange) for noon-reports. 

Figure 7: Density Distribution of Percentage Residuals 

in total fuel consumption for MLR Models (Blue) and 

Mathematical Model (Orange) in Voyages 



on a limited number of vessel categories due to the limited 

variety of ships in our dataset. Therefore, models that can be 

applied to a wider range of vessels could be developed by 

incorporating a greater diversity of vessel types in the training 

dataset. 
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