

Résumé – Afin de faciliter la compréhension et l’interprétation des contre-exemples, retournés par les Model-Checkers, cet
article présente une approche, basée sur l’IDM pour la visualisation et la simulation automatique des contre-exemples
Uppaal (traces) directement sur les programmes de contrôle-commande. En effet, les traces Uppaal sont transformées
automatiquement en des traces génériques, indépendantes de plateformes. Un métamodèle modélisant ces traces génériques,
résultant de l’exécution des programmes de contrôle-commande selon la norme PLCOpen, est également proposé. Les traces
génériques sont ensuite transformées en des traces spécifiques, directement simulables par des plateformes de fournisseurs.
Notre approche a été validée sur un cas d’étude industriel concret.

Abstract –In order to facilitate the understanding and the interpretation of the counterexamples returned by Model-
Checkers, this paper presents an MDE-based approach for the automatic visualization and simulation of the Uppaal
counterexamples (traces) directly on the control-command programs. Indeed, Uppaal traces are automatically transformed
into generic (platform-independent) traces. A metamodel modeling the generic traces resulting from the execution of the
control-command programs, according to the PLCOpen standard, is also proposed. The generic traces are then transformed
into specific traces, which can be directly simulated on vendor-platforms. Our approach has been validated on a concrete
industrial case study.

Mots clés - Simulation de contre-exemple, Rétro-Annotation, Model checking, Programmes de contrôle-commande, API
Keywords – Counterexample simulation, Back-annotation, Model checking, Control-command programs, PLC.

1 INTRODUCTION & CONTEXT MOTIVATIONS
Model checking (Baier & Katoen, 2008; Bérard et al., 2013) is
an automatic formal method supported by a tool, the model
checker. In model checking, the system to be verified is
modeled in a formal model (generally as automata). On this
formal model, model checking consists of automatically
checking specified properties (expressed in temporal logic). The
Model-Checker explores in a concrete or symbolic way the
entire state space of the formal model and checks for each state
the satisfaction of the specified property. If the property is
violated, the model checker returns a counterexample
illustrating the trace of the error, i.e. the succession of states and
transitions that violate the property (Bérard et al., 2013).
In model checking, counterexamples are supposed enabling
users to achieve three objectives (Aboussoror, 2013):

1. understand the counterexample and its scenario;
2. understand the error shown in the counterexample;
3. understand the cause of the error.

As the counterexamples returned by the model checkers are in a
formal notation, this only enables expert users of these tools to

achieve the first objective. However, even for expert users,
understanding the counterexamples errors and theirs sources
(objectives 2 and 3) requires significant efforts of interpretation.
It then becomes clear that system designers who are not familiar
with formal notations (which is the general case) are not able to
achieve all three objectives (Kaleeswaran et al., 2022).
Therefore, the information contained in the counterexamples, as
returned by model checkers, is not suitable for the designers and
does not satisfactorily support them to correct their system
models. The visualization and the simulation of
counterexamples on the verified model (Back-annotation) is a
crucial step for designers to understand the results of the
verification (Guerra et al., 2009; Kaleeswaran et al., 2022). It
consists of illustrating the error returned by the model checker
in a high-level language, more easily understood by users than
formal notations (Hegedüs et al., 2010).
The counterexamples visualization and simulation can concern
the static (structural) or the dynamic (behavioral) instances. The
static instances visualization allows highlighting the static
elements (classes, attributes, etc.) impacted by the error in a
high-level language. On the other hand, dynamic instances

SORAYA MESLI-KESRAOUI1, DJAMAL KESRAOUI1, PASCAL BERRUET2, FLAVIO OQUENDO3

1 SEGULA Engineering France
Parc Technellys, 165 Rue de la Montagne du Salut, F-56602, Lanester cedex, France

soraya.kesraoui@segula.fr, djamal.kesraoui@segula.fr

2 Université Bretagne Sud, Lab-STICC
BP 92116, F-56321, Lorient cedex, France

pascal.berruet@univ-ubs.fr

3 Université Bretagne Sud, IRISA
BP 573, F-56017, Vannes cedex, France

flavio.oquendo@irisa.fr

CIGI QUALITA MOSIM 2023
Verification of Control-Command Programs:
Counterexample Explanation by Simulation

mailto:soraya.kesraoui@segula.fr,
mailto:djamal.kesraoui@segula.fr
mailto:pascal.berruet@univ-ubs.fr
mailto:flavio.oquendo@irisa.fr

visualization consists in simulating the execution sequences that
lead to the error in an understood form. It consists in translating
execution sequences from formal notation into high-level
language. Dynamic instances visualization is more difficult to
implement than static visualization because it requires defining
the execution trace for both the formal (source) and the high-
level (target) language (Hegedüs et al., 2010).
The execution trace model represents the changes of entities
over time and provides also an abstract representation of its
runtime behavior (Mayerhofer et al., 2012). It can be generic or
domain specific. The use of the generic trace model promotes
its usability, but increases processing time (Bousse et al., 2015).
On the other hand, the domain-specific trace model reduces
computational time and complexity (Bousse et al., 2015).
However, its design is often tedious.

1.1.1 Motivation
We have proposed in previous work, an approach for checking
control-command chains (Mesli-Kesraoui et al., 2016, 2016). In
this approach, the control-command programs are translated
automatically to networks of timed automata (Kesraoui, 2017).
On these automata, a set of safety and liveness properties,
expressed in CTL logic (Clarke & Emerson, 1981), were
verified using the model checker Uppaal. This tool returns a
counterexample explaining the error if the property is not
verified. However, the returned counterexamples are in a formal
notation, their understanding requires extensive knowledge as
well as efforts to understand the meaning of the counterexample
by control-command developers.

1.1.2 Contributions
In this paper, we propose a Model Driven Engineering (MDE)
approach for the dynamic simulation of counterexamples,
returned by model checker, directly on the control-command
programs (Back-annotation). Our contributions are resumed
bellow.
 As the visualization of dynamic instances consists in

transforming the execution trace, returned by a model
checker, into an execution trace of control-command
programs model, it is then necessary to define the syntax
and the trace model for both model checker and control-
command programs. If the abstract syntax of the used
model checker (Uppaal) and its trace model have been
proposed in (Brandt, 2016), at the level of the control-
command programs, only the abstract syntax was defined
by PLCOpen (PLCopen, 2009). In this work, we study the
execution traces of control-command programs and we
define the generic PLCOpen traces (vendor-independent)
metamodel. The proposed trace metamodel is based on
PLCOpen syntax in order to increase its interoperability
(vendor-independent) and its reusability.

 Automatic generation of control program traces from
model checker traces. We developed a set of rules
translation allowing to parse the model checker traces and
producing PLCOpen generic traces. The challenges here
are to reduce the abstraction gap and the granularity gap
between the two trace models.

 Adaptation of PLCOpen generic traces into vendor-
specific traces. The platforms (manufacturers) allowing
the editing of control-command programs (like Straton1)
do not all comply with the PLCOpen standard. Our goal
here consists in transforming the generic PLCOpen traces
into vendor-specific traces that can be used by a specific
platform.

1Straton: http ://www.copalp.com/fr/

 Automatic simulation of the generated vendor-specific
traces. The obtained vendor-specific traces are executed
simultaneously with the control-command program to
simulate the counterexample and highlight the program
error (counterexample), initially returned by the model
checker.

1.1.3 Paper structure
The next section presents the background and problem
statement of the work carried out (Section 2). It introduces the
concepts of Model driven engineering (MDE), control-
command programs, the Uppaal counterexamples and discusses
the related work on counterexamples visualization. It ends by
presenting the problem statement. Our approach for simulating
counterexamples, returned by model checker, on control-
command programs and its implementation are described in
Section 3. Section 4 discusses the validation results of our
approach on an industrial case study. Finally, Section 5
concludes and opens to future work.

2 BACKGROUND & PROBLEM STATEMENT

2.1 Model driven engineering (MDE)
MDE is a design approach based on more abstract concerns than
conventional programming (Combemale, 2008) in order to
separate the designed solution from its implementation. In
MDE, the most used concept is the model.
The relationship between the system and the model is called
representation. It states that a model is an abstraction of a real
system, i.e. the model represents the real system. The model is
specified from a metamodel (a syntax) that describes the
language of expression (vocabulary) of the model (Combemale,
2008). The model and its metamodel are linked by a compliance
relationship meaning that a model must always conform to its
metamodel.
The MDE specification introduces also the concept of model
transformation, which allows the generation from a source
model, conforming to a source metamodel, to a target model
conforming to a target metamodel. The main objective of model
transformations is to enable the generation of platform-specific
models from platform-independent (generic) models and thus
promote interoperability (Bézivin & Gerbé, 2001).

2.2 Visualization of counterexamples on control-command
programs

2.2.1 Control-command programs
Control-command systems are used to control physical
industrial process. The interaction of the control system with the
physical process is carried out by observations through sensors
and by actions performed via actuators. The sensors transform
the physical measurements of the process into electrical signals
that can be interpreted by the control-command system.
Actuators (motors, transformers, etc.) transform the electrical
commands of the control-command system in action orders that
allow acting on the physical process by changing its state.
Control-command programs are often deployed on
programmable logic controllers (PLCs). They present a cyclical
operational functioning (De Smet et al., 2000) over three steps.
In the first step, data from the environment (sensors) are read
and stored in internal variables. In the second step, the control-
command program is executed, and output data is calculated
according to the control logic. In the third and final step, these
outputs are written, i.e. sent to the actuators (De Smet et al.,
2000).

http://www.copalp.com/fr/

The design of control-command programs consists of
developing programs (or control logic) in one of the five
standardized languages defined by IEC 61131-3 (Commission,
2002): Ladder Diagram (LD), Instruction List (IL), Structured
Text (ST), Sequential Function Chart (SFC) and Function Block
Diagram (FBD). The Figure 1 shows an example of a LD
program.
However, the interoperability of these programs between
different vendors has not been addressed by IEC 61131-3
(Commission, 2002). To manage this interoperability problem,
the PLCOpen committee proposed a common syntax for these
programs. This syntax defines all the entities and elements of a
control-command program in a platform-independent (generic)
way.

Figure 1. Ladder example program

2.2.2 PLCOpen syntax
According to PLCOpen, a control-command project (Figure 2)
is composed of program types (Types in Figure 2) and
configurations (Configurations in Figure 2). Program types are
specified as an aggregation of several Program organization
units (Pou in Figure 2). Pou is characterized by interfaces
(variables) and a code part (body in Figure 2) that can be written
in one of the five languages of IEC 61131-3, such as FDB and
LD for example.
On the other hand, the necessary conditions (Instance) for the
execution of these programs are made up of configurations.
Each configuration consists of a set of variables (accessVars,
configVars, globalVars) and a set of resources. A resource is the
unit providing processing, storage, and communication required
for the execution of programs (PouInstance), i.e. resource
allows program instances execution as tasks. A task describes
the runtime properties for the execution of program instances
and can be executed in a periodic or triggered manner.

Figure 2. Control-command programs abstract syntax

metamodel (excerpt taken from (PLCopen, 2009))

2.2.3 Straton IDE
Straton is an Integrated Development Environment (IDE) for
PLC control-command programs. It supports the five standard
languages (CFS, FBD, LD, ST, IL) of IEC 61131-3 and offers a
virtual machine for running control-command programs on a
computer before transferring them to PLCs.

2.2.4 Existing visualization approaches
FBDVerifier (Jee et al., 2010) is a tool for visualizing
counterexamples returned by the model checker SVM Cadence
on Functional Block Diagrams (FBD) in the form of a
chronological diagram. However, this type of visualization does
not allow illustrating the causal links between the different
blocks. The animation of the original model remains one of the
best visualizations allowing the user to achieve different
objectives (Loer & Harrison, 2006). This type of visualization
was adopted in the MODCHK tool (Pakonen et al., 2018). In
fact, this tool allows the visualization of the dynamic traces
returned by the model checker NuSMV directly on the FBD. It
provides parallel animation of the original FBD and the verified
temporal properties to illustrate the source of the error.
Despite the fact that these tools offer interesting solutions for
dynamic counterexamples visualization, they remain specific to
FBD programs and dependent on the used vendor-platforms.
To be vendor-independent, the dynamic counterexamples
visualization requires the execution operations of the IEC
61131-3 programs and a generic trace model resulting from the
execution of these programs. To our knowledge, the literature
remains fairly poor and presents only a few specifications of the
execution operations of some languages of IEC 61131-3
standard (De Smet et al., 2000; Rossi & Schnoebelen, 2000). On
the other hand, no trace model modeling the execution traces of
control-command programs has been defined in the current state
of the art.

2.3 UPPAAL counterexamples visualization

2.3.1 Uppaal Tool
Uppaal is a model checker for real-time systems modeled as a
network of communicating timed automata (example illustrated
in Figure 2). Each automaton is a state machine that manages
physical time through a set of clocks. The automaton evolves
either by a delay of time or by the transition guard satisfaction
driven by synchronization channels (Alur & Dill, 1990).
The Uppaal model for the LD program of the Figure 1 is
illustrated in Figure 3.

Figure 3. LD automaton for 2-WMV (taken from (Mesli-

Kesraoui et al., 2016))

This automaton is composed of three main states
(InputsReading, Execution, OutputsWriting) which describe the
cyclical execution of programmable logic controllers. In the
initial state, the controller is in the state InputsReading to read
the inputs. Then, it reaches the Execution state where different
outputs will be calculated. The controller then goes to the

OutputsWriting state to write outputs to its environment. The
cycle time is represented by a clock named cycle.

2.3.2 Uppaal counterexample
To check for example, that the CmdO and the CmdC variables
cannot be at 1 simultaneously in the LD program, the following
CTL property is used.

A[] not CmdO ==1 and CmdC==1.
The verification of this property on Uppaal generates a

counterexample. This counterexample consists of states and
transitions (Figure 4-a).

A metamodel (Figure 4-b) of these traces was proposed in
(Brandt, 2016). The Uppaal trace is composed of states (State)
and transitions (Abstract-Transition), related to an automaton
(TemplateInstance). The state is related to a set of locations and
contains all concrete values (Valuation) of all variables
(example: FdccO =1). Transitions can be a simple transition
(EdgeTransition) or a delay transition. Each transition has a
source and a target state.

Figure 4. Uppaal trace : a) Uppaal trace example ; b)
Uppaal trace metamodel (taken from (Brandt, 2016))

2.3.3 Existing UPPAAL counterexamples visualization
approaches

Uppaal counterexample visualization was studied in (Schivo et
al., 2017) where an MDE-based approach for Uppaal
counterexamples visualization on the MechatronicUML models
was proposed. However, the application of this approach to
control-command programs remains difficult because it requires
the consideration of other parameters such as the cyclical
execution of the control-command programs. Indeed, if the
Uppaal model checker has been widely used for the verification
of control-command programs in the literature (Da Silva et al.,
2008; De Vasconcelos Oliveira et al., 2010; Mokadem et al.,
2010; Soliman & Frey, 2011), the Uppaal counterexamples
simulation on control-command programs has received little
research attention.

2.4 Problem statement
The counterexamples returned by Uppaal are in the form of a
series of states and transitions. The interpretation of these
counterexamples requires simulating all the states and
transitions on Uppaal and a great effort to identify the error
mining. On the other hand, the projection of the error on the
verified control-command program (presented in Figure 1) is
not trivial, given the gap in granularity and abstraction between
the Uppaal traces and the control-command programs.

The aim of this work is to reduce this gap in order to facilitate
the interpretation of the counterexamples directly on the
control-command programs. The main questions are:

Q1. Which data will be used when simulating the Uppaal
counterexample on control-command programs?

Q2. How to automatize the translation of the returned
counterexamples into simulations on control-
command programs?

Q3. How to deal with the problem of different targeting
vendors platforms of control-command programs
when simulating counterexamples?

3 PROPOSED APPROACH
In order to define the data necessary for the simulation (Q1) of
the counterexamples directly on the control programs (target
data), we carried out some simulations and tests on control-
command programs. During these tests, we realized that the
simulation of control-command programs consists of
manipulating the inputs of a program and comparing the results
of its outputs with the expected ones. Therefore, our goal is to
turn the model cherckers’ traces into a test case, which contains
assignments of the program inputs and expectations of program
outputs.
To answer the second question (Q2), we have opted for the use
of an MDE-based approach, as it provides a well-defined
framework for automatic generation. However, implementing
this approach required defining all the metamodels and
transformation rules necessary for this transformation.
On the other hand, to deal with the problem of different vendor
platforms of the control-command programs (Q3), we introduce
an intermediate step. This later transforms the traces returned by
a model chechers into generic PLCOpen traces. The execution
of these generic traces on a given platform requires transforming
them into acceptable platform traces. This step is very
important, because it allows us to transform the
counterexamples into a generic model, independent of all
vendor platforms, in order to increase the usability of our
solution.

In summary, our proposed approach is MDE-based and allows
Uppaal counterexamples simulation directly on control-
command programs (Figure 5). It transforms the Uppaal traces
into generic PLCOpen traces. These generic traces are then
adapted to be directly simulated on a target-specific platform
(Straton in our case). For this, we defined the generic trace
metamodel for the control-command programs, based on
PLCOpen syntax and the vendor-specific trace metamodel for
Straton traces.

Figure 5. Proposed approach for Uppaal traces simulation

on control-command programs

3.1 PLCOpen generic trace
The definition of the generic trace metamodel of control-
command programs is based on the identification of the entities
that change during the execution time of these programs.
The execution of a control-command program starts with the
running of its configuration. The start of the configuration (start
operation in Figure 6) allows initializing all its variables and the
execution of all its resources. Otherwise, the stop of
configuration causes the stop of all its resources. Starting a
resource causes the initialization of all its variables and enable
all its tasks. Otherwise, if the resource is stopped, it disables all
its tasks. Depending on the specification, the task can be
performed either cyclically or in a trigged manner. In the two
cases, the task starts executing at the starting time (startTime)
and stops execution at the ending time (endTime). The task can
be interrupted (interrupt operation) at any time (interruptTime)
by another prior task. Once the prior task is finished, the
interrupted task is resumed at the resumeTime. The task can
have several executions. At each execution, the task reads
inputs, executes the associated POU and writes outputs. Finally,
executing the POU allows running the different programs (FBD,
LD, SFC, ST, and IL) and updates values of variables according
to the program logic.

Figure 6. The execution operation of control-command

programs.

Figure 7 illustrates an example of a generic PLCOpen trace. In
this example, the TracedTask was executed twice (two cycles).
At the beginning (StartTime) of the first cycle, the input FdcC
variable was at 1. At the end of this cycle (endTime), the output
variable CmdO has the value of 0. In the second cycle, the
FdcC remained at 1, the execution of this cycle allows the
CmdO variable to be set to 1.

Figure 7. Example of a generic trace model

As explained above, PLCOpen trace results from the execution
of different tasks and changes in the values of variables. At
each time, each variable is characterized by its value and task
is characterized by its starting, interrupting, resuming and
ending time. To capture PLCOpen traces, we introduced the
value property in the Variable class that stores the different
concrete values of the variables during the execution. In the
same way, the startTime, interruptTime, resumeTime, and the
endTime properties in the Task class allow capturing
respectively the task start, interruption, resume and end time.

The proposed generic PLCOpen traces metamodel is
illustrated in Figure 8. Trace is related to a resource and results
from:

1) the execution of different tasks (TracedTask in
Figure 8) and;

2) changes in the values of variables
(TracedVariable).

These two classes have an association (originalObject) with
the original Task and Variable classes defined in the abstract
syntax PLCOpen. The different valuations of each variable are
stored in the attribute value of the class VarValue. Each
TracedTask contains all its executions (Execution) or its
cycles. The number property in the Task class indicates the
execution number of the task. Each execution is characterized
by 4-time values (Time) representing the startTime, the
interruptTime, the resumeTime and the endTime. The
association varValues allow storing different values of
variable at each of the 4 task times.

Figure 8. A generic PLCOpen trace metamodel

3.2 Uppaal trace to PLCOpen trace
We developed transformation rules to derive Uppaal traces into
generic PLCOpen traces. This transformation takes both the
Uppaal trace metamodel (Figure 4-b) and the PLCOpen abstract
syntax metamodel (Figure 2) in inputs and produces a model
that conforms to the generic PLCOpen traces metamodel
(Figure 8). The Uppaal trace metamodel is used to deduce the
trace error in the counterexample, on the other hand, the
PLCOpen metamodel is used to identify different variable types
(input/ output). We developed the following rules, illustrated in
Figure 9.

1. Trace2Trace. The Uppaal trace project is translated
into a PLCOpen trace project. This later consists of a
set of TracedVariable and TracedTask.
TracedVariable are generated by the rule
Variable2TracedVariable. TracedTask gathers all the
cycle generated by the rule EdgeTransition2Execution.

2. EdgeTransition2Execution. In the Uppaal automaton
(Figure 3), all the states and transitions between the
InputsReading state and the OutputsWriting state

constitutes one program execution or cycle (Figure 8).
For this, we translate from Uppaal trace each
EdgeTransition starting by the InputsReading state to
an Execution instance in the generic PLCOpen trace.
Each Execution instance contains both the start and the
end time (Time) instance, generated by the State2Time
rule (example in Figure 9).

3. State2Time. Each InputsReading and OutputsWriting
states are translated to a Time Instance (example in
Figure 9). The time attribute for these instance
correspond to the cycle value in the state instance, as
illustrated in Figure 9.

4. Variable2TracedVariable. From the PLCOpen
abstract syntax, all inputs and outputs variables are
translated to a TracedVariable in PLCOpen generic
trace. Input TracedVariables are related to startTime
of a cycle and the outputs traced variables to the
endTime.

5. Valuation2VarValue. Each Valuation (Figure 4) from
the Uppaal trace is transformed into VarValue and
related to its TracedVariable, generated by the above
rule (example CmdO variable in Figure 9).

Figure 9. Tranlation rules illustration

The obtained model is generic and therefore requires adaptation
to a target vendor-platform for its execution and its simulation.
In the following, we present the adaptation of this model to a
specific trace model for the Straton platform.

3.3 PLCOpen trace to Straton trace
Several control-command programs IDE (like Straton, Tia
portal, etc.) allow the exploitation and the animation of specific
trace sequences directly on their editors. These specific traces
are similar on the different IDEs. They essentially comprise
simulation steps and in each step, assignments of variables or
checks on the values of variables are carried out.
For this work, we have used the Straton IDE. After studying
examples of Straton trace (Figure 11), we proposed the
metamodel presented in Figure 10. Straton trace consists of
several steps (Step in Figure 10) that are of three types of
expressions: assignment, evaluation, and wait (Figure 10).
AssignmentExpression allows values to be assigned to variables
i.e. variable initialization (lines 2, 3, 4 in Figure 11).
EvaluationExpression is used to check variable values (lines 10-
15, in Figure 11). Finally, WaitExpression allows the test

execution to be suspended for the specified time (lines 7 in
Figure 11).

Figure 10. Straton Trace metamodel

To generate Straton traces from PLCOpen traces, we developed
the following rules.

1. Trace2Trace. The generic PLCOpen trace project is
transformed into a Straton trace. This later gathers all
the steps generated from Execution instances with the
following rules.

2. StartTime2AssignmentExpression. All the
TracedVariables related to the startTime of a cycle
(inputs), illustrated by the orange box in Figure 9, have
been transformed into a set of assignment expressions
(AssignmentExpression for Straton trace). For example
FdcO:=0 in Figure 11.

3. EndTime2EvaluationExpression. TracedVariables
related to the endTime of a cycle (outputs), illustrated
by the blue box in Figure 9, have been transformed into
evaluations expression (EvaluationExpression for
Straton trace). For example CmdO=1 in Figure 11.

4. Time2WaitExpression. To manage the execution
time of the cycle, a WaitExpression was also generated
from the endTime-startTime of a time attribute.

Figure 11. Sample Straton Trace Model

Another translation module has been developed to translate the
obtained Straton trace model from the XML notation to the
textual notation to be executed directly by Straton.

3.4 Automatic simulation of the generated trace on Straton
Straton executes the generated trace as a test case. First, Straton
executes assignment expressions in order to initialize control-
command variables (Figure 11). When executing the wait
expression, the test is suspended for the time specified in the

wait expression. After this, Straton compares evaluation
expressions with the values obtained after the real execution of
the control-command program. Then, it generates a report on
each step (“Etat” column in Figure 11).

4 CASE STUDY

4.1 Presentation
To evaluate our approach, we have validated it with a concrete
case study: a 2-way motorized valve (2WMV) component. This
physical component acts as a barrier. Indeed, when it is opened,
it allows passing fluid. Nevertheless, if it is closed, fluid is
blocked at its ends (Figure 12).

Figure 12. Two-way motorized valve

The control-command program is written in LD under the
Straton software (Figure 1). The program runs in a cyclic
manner. In each cycle, it reads the inputs (CtrlO, FdcO, FdcC)
received respectively from the supervision interface, opens
switch limit, and closes switch limit sensors (Figure 12). Then,
it calculates the outputs. At the end of the cycle, it updates the
outputs (CmdO, CmdC, StO, StC, StFMat, StFCmd). The
Uppaal model for the LD program of the valve is illustrated in
Figure 3. The detailed presentation of our case study can be
found in (Mesli-Kesraoui et al., 2016).

4.2 Evaluation method
In order to evaluate the performance of our approach and its
ability to simulate Uppaal counterexamples on control-
command programs, we applied it to a set of three (3) Uppaal
counterexamples resulting from the formal verification of the
properties of the case study.
For this evaluation, two measures were considered. The first
measure (M1) calculates the automatic generation time of the
Straton traces from the Uppaal counterexamples. The purpose
of this measure is to study the ability of our approach to
transform different sizes of Uppaal traces. The second metric
(M2) aims to calculate the number of simulation steps required
to simulate the counterexample in the two tools: Uppaal and
Straton. The number of simulation steps is an important
complexity indication. Indeed, if the number of simulation steps
is high, then understanding the counterexample is difficult. This
metric measures the usefulness of our approach to facilitate the
interpretation of counterexamples when verifying control-
command programs.

4.3 Results & discussion
The experiment was carried out on a computer with an I7
microprocessor with a frequency equal to 2.6 GHz and 8 GB of
memory. The results are presented in TABLE I.
The results show that transformations take less than 0.3 seconds
for a counterexample containing 54 states and 53 transitions
(EC3).
On the other hand, the results show that the number of
simulation steps (M2) was divided by 24 between the Uppaal
counterexample and Straton. On Uppaal, the user needs to run
24 simulation steps to execute a single program cycle.
Conversely, on the generated Straton trace, a cycle is carried out
in one simulation step. These results show that our approach
significantly reduces the simulation effort.

TABLE I. Experimentation results

Counterexample (CE) CE1 CE2 CE3
Size state 15 32 54

Transition 14 31 53
Total 29 63 107

Uppaal tarce PLCOpen generic trace
(second)

0.248 0.245 0.258

PLCOpen generic trace  Straton trace
(second)

0.027 0.004 0.013

Total time (M1) (second) 0.275 0.249 0.271
Simulation step in Uppaal (M2) 27 55 107
Simulation step in Straton (M2) 1 2 4

5 CONCLUSION
In this work, we presented a novel solution for the automatic
simulation of Uppaal counterexamples on control-command
programs (Back-annotation).
In these works, we have proposed a PLCOpen generic trace
metamodel to specify the execution traces of command
programs in a generic way. Unlike the related work, the generic
trace metamodel will promote its usability and nteroperability.
Indeed, the generic PLCOpen traces metamodel can be used for
the visualization of other model checkers’ counterexamples on
other control-programs vendor-platforms. One have to
transform the counterexamples of these model checkers into
generic traces, and then to transform these generic traces into
specific traces for the target platforms.
Our proposed approach was evaluated on an industrial case
study. Experimentation showed that the use of our approach
enables traces to be generated in a very short time (less than 0.3
seconds) and reduce simulation steps. This solution helps
system designers to understand counterexamples and make it
possible for them to use formal techniques in an industrial
context.
Further experiments with different user profiles (experts and
non-experts in formal verification) will be required to assess the
contribution of our solution in the interpretation of
counterexamples.

6 REFERENCES
Aboussoror, E. A. (2013). Méthodes de diagnostic avancées

dans la validation formelle des modèles [PhD Thesis].
Université de Toulouse III-Paul Sabatier.

Alur, R., & Dill, D. (1990). Automata for modeling real-time
systems. Automata, Languages and Programming: 17th
International Colloquium Warwick University, England,
July 16–20, 1990 Proceedings 17, 322–335.

Baier, C., & Katoen, J.-P. (2008). Principles of model checking.
MIT press.

Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A.,
Petrucci, L., & Schnoebelen, P. (2013). Systems and
software verification: Model-checking techniques and tools.
Springer Science & Business Media.

Bézivin, J., & Gerbé, O. (2001). Towards a precise definition of
the OMG/MDA framework. Proceedings 16th Annual
International Conference on Automated Software
Engineering (ASE 2001), 273–280.

Bousse, E., Mayerhofer, T., Combemale, B., & Baudry, B.
(2015). A generative approach to define rich domain-
specific trace metamodels. Modelling Foundations and
Applications: 11th European Conference, ECMFA 2015,
Held as Part of STAF 2015, LAquila, Italy, July 20-24, 2015.
Proceedings 11, 45–61.

Brandt, J. (2016). Understanding attacks: Modeling the outcome
of attack tree analysis. 25th Twente Student Conference on
It, 25.

Clarke, E. M., & Emerson, E. A. (1981). Design and synthesis
of synchronization skeletons using branching time temporal
logic.

Combemale, B. (2008). Meta modeling Approach for Model
Simulation and Verification: Application To Process
Engineering. French Phd Thesis,(IRIT, Enseeiht).

Commission, I. E. (2002). Programmable controllers-part 3:
Programming languages. IEC 61131-3 (Ed. 2.0).

Da Silva, L. D., de Assis Barbosa, L. P., Gorgônio, K.,
Perkusich, A., & Lima, A. M. N. (2008). On the automatic
generation of timed automata models from function block
diagrams for safety instrumented systems. 2008 34th Annual
Conference of IEEE Industrial Electronics, 291–296.

De Smet, O., Couffin, S., Rossi, O., Canet, G., Lesage, J. J.,
Schnoebelen, P., Papini, H., de Fabrications, C., & Paris, C.
(2000). Safe programming of PLC using formal verification
methods. Computer Science, 7, 8.

De Vasconcelos Oliveira, K., Perkusich, A., Lima, A. M. N.,
Gorgônio, K., & da Silva, L. D. (2010). Standard-based
formal validation of programmable logic controller
programs. 2010 IEEE International Conference on
Industrial Technology, 1655–1660.

Guerra, E., de Lara, J., Malizia, A., & Díaz, P. (2009).
Supporting user-oriented analysis for multi-view domain-
specific visual languages. Information and Software
Technology, 51(4), 769–784.

Hegedüs, Á., Bergmann, G., Ráth, I., & Varró, D. (2010). Back-
annotation of simulation traces with change-driven model
transformations. 2010 8th IEEE International Conference
on Software Engineering and Formal Methods, 145–155.

Jee, E., Jeon, S., Cha, S., Koh, K., Yoo, J., Park, G., & Seong,
P. (2010). FBDVerifier: Interactive and visual analysis of
counter-example in formal verification of function block
diagram. Journal of Research and Practice in Information
Technology, 42(3), 171–188.

Kaleeswaran, A. P., Nordmann, A., Vogel, T., & Grunske, L.
(2022). A systematic literature review on counterexample
explanation. Information and Software Technology, 145,
106800.

Kesraoui, S. M. (2017). Intégration des techniques de
vérification formelle dans une approche de conception des
systèmes de contrôle-commande.

Loer, K., & Harrison, M. D. (2006). An integrated framework
for the analysis of dependable interactive systems (IFADIS):
Its tool support and evaluation. Automated Software
Engineering, 13, 469–496.

Mayerhofer, T., Langer, P., & Kappel, G. (2012). A runtime
model for fUML. Proceedings of the 7th Workshop on
Models@ Run. Time, 53–58.

Mesli-Kesraoui, S., Bignon, A., Kesraoui, D., Toguyeni, A.,
Oquendo, F., & Berruet, P. (2016). Vérification formelle de
chaines de contrôle-commande d’éléments de conception
standardisés. Proceedings of the 11th International
Conference on Modeling, Optimization & Simulation
(MOSIM 2016).

Mesli-Kesraoui, S., Toguyeni, A., Bignon, A., Oquendo, F.,
Kesraoui, D., & Berruet, P. (2016). Formal and joint
verification of control programs and supervision interfaces
for socio-technical systems components. IFAC-
PapersOnLine, 49(19), 426–431.

Mokadem, H. B., Berard, B., Gourcuff, V., De Smet, O., &
Roussel, J.-M. (2010). Verification of a timed multitask

system with UPPAAL. IEEE Transactions on Automation
Science and Engineering, 7(4), 921–932.

Pakonen, A., Buzhinsky, I., & Vyatkin, V. (2018).
Counterexample visualization and explanation for function
block diagrams. 2018 IEEE 16th International Conference
on Industrial Informatics (INDIN), 747–753.

PLCopen. (2009). PLCOpen XML 2.01. https://plcopen.org/
Rossi, O., & Schnoebelen, P. (2000). Formal modeling of timed

function blocks for the automatic verification of Ladder
Diagram programs. Proc. 4th Int. Conf. Automation of
Mixed Processes: Hybrid Dynamic Systems (ADPM’2000),
Dortmund, Germany, 177–182.

Soliman, D., & Frey, G. (2011). Verification and validation of
safety applications based on PLCopen safety function
blocks. Control Engineering Practice, 19(9), 929–946.

https://plcopen.org/

