
 

 

Résumé – Afin de faciliter la compréhension et l’interprétation des contre-exemples, retournés par les Model-Checkers, cet 
article présente une approche, basée sur l’IDM pour la visualisation et la simulation automatique des contre-exemples 
Uppaal (traces) directement sur les programmes de contrôle-commande. En effet, les traces Uppaal sont transformées 
automatiquement en des traces génériques, indépendantes de plateformes. Un métamodèle modélisant ces traces génériques, 
résultant de l’exécution des programmes de contrôle-commande selon la norme PLCOpen, est également proposé. Les traces 
génériques sont ensuite transformées en des traces spécifiques, directement simulables par des plateformes de fournisseurs. 
Notre approche a été validée sur un cas d’étude industriel concret. 
 
Abstract –In order to facilitate the understanding and the interpretation of the counterexamples returned by Model-
Checkers, this paper presents an MDE-based approach for the automatic visualization and simulation of the Uppaal 
counterexamples (traces) directly on the control-command programs. Indeed, Uppaal traces are automatically transformed 
into generic (platform-independent) traces. A metamodel modeling the generic traces resulting from the execution of the 
control-command programs, according to the PLCOpen standard, is also proposed. The generic traces are then transformed 
into specific traces, which can be directly simulated on vendor-platforms. Our approach has been validated on a concrete 
industrial case study. 
 
Mots clés - Simulation de contre-exemple, Rétro-Annotation, Model checking, Programmes de contrôle-commande, API 
Keywords – Counterexample simulation, Back-annotation, Model checking, Control-command programs, PLC. 
 

1 INTRODUCTION & CONTEXT MOTIVATIONS 
Model checking (Baier & Katoen, 2008; Bérard et al., 2013) is 
an automatic formal method supported by a tool, the model 
checker. In model checking, the system to be verified is 
modeled in a formal model (generally as automata). On this 
formal model, model checking consists of automatically 
checking specified properties (expressed in temporal logic). The 
Model-Checker explores in a concrete or symbolic way the 
entire state space of the formal model and checks for each state 
the satisfaction of the specified property. If the property is 
violated, the model checker returns a counterexample 
illustrating the trace of the error, i.e. the succession of states and 
transitions that violate the property (Bérard et al., 2013).  
In model checking, counterexamples are supposed enabling 
users to achieve three objectives (Aboussoror, 2013):  

1. understand the counterexample and its scenario;  
2. understand the error shown in the counterexample;  
3. understand the cause of the error.  

As the counterexamples returned by the model checkers are in a 
formal notation, this only enables expert users of these tools to 

achieve the first objective. However, even for expert users, 
understanding the counterexamples errors and theirs sources 
(objectives 2 and 3) requires significant efforts of interpretation. 
It then becomes clear that system designers who are not familiar 
with formal notations (which is the general case) are not able to 
achieve all three objectives (Kaleeswaran et al., 2022). 
Therefore, the information contained in the counterexamples, as 
returned by model checkers, is not suitable for the designers and 
does not satisfactorily support them to correct their system 
models. The visualization and the simulation of 
counterexamples on the verified model (Back-annotation) is a 
crucial step for designers to understand the results of the 
verification (Guerra et al., 2009; Kaleeswaran et al., 2022). It 
consists of illustrating the error returned by the model checker 
in a high-level language, more easily understood by users than 
formal notations (Hegedüs et al., 2010). 
The counterexamples visualization and simulation can concern 
the static (structural) or the dynamic (behavioral) instances. The 
static instances visualization allows highlighting the static 
elements (classes, attributes, etc.) impacted by the error in a 
high-level language. On the other hand, dynamic instances 
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visualization consists in simulating the execution sequences that 
lead to the error in an understood form. It consists in translating 
execution sequences from formal notation into high-level 
language. Dynamic instances visualization is more difficult to 
implement than static visualization because it requires defining 
the execution trace for both the formal (source) and the high-
level (target) language (Hegedüs et al., 2010). 
The execution trace model represents the changes of entities 
over time and provides also an abstract representation of its 
runtime behavior (Mayerhofer et al., 2012). It can be generic or 
domain specific. The use of the generic trace model promotes 
its usability, but increases processing time (Bousse et al., 2015). 
On the other hand, the domain-specific trace model reduces 
computational time and complexity (Bousse et al., 2015). 
However, its design is often tedious. 

1.1.1 Motivation 
We have proposed in previous work, an approach for checking 
control-command chains (Mesli-Kesraoui et al., 2016, 2016). In 
this approach, the control-command programs are translated 
automatically to networks of timed automata (Kesraoui, 2017). 
On these automata, a set of safety and liveness properties, 
expressed in CTL logic (Clarke & Emerson, 1981), were 
verified using the model checker Uppaal. This tool returns a 
counterexample explaining the error if the property is not 
verified. However, the returned counterexamples are in a formal 
notation, their understanding requires extensive knowledge as 
well as efforts to understand the meaning of the counterexample 
by control-command developers. 

1.1.2 Contributions 
In this paper, we propose a Model Driven Engineering (MDE) 
approach for the dynamic simulation of counterexamples, 
returned by model checker, directly on the control-command 
programs (Back-annotation). Our contributions are resumed 
bellow. 
 As the visualization of dynamic instances consists in 

transforming the execution trace, returned by a model 
checker, into an execution trace of control-command 
programs model, it is then necessary to define the syntax 
and the trace model for both model checker and control-
command programs. If the abstract syntax of the used 
model checker (Uppaal) and its trace model have been 
proposed in (Brandt, 2016), at the level of the control-
command programs, only the abstract syntax was defined 
by PLCOpen (PLCopen, 2009). In this work, we study the 
execution traces of control-command programs and we 
define the generic PLCOpen traces (vendor-independent) 
metamodel. The proposed trace metamodel is based on 
PLCOpen syntax in order to increase its interoperability 
(vendor-independent) and its reusability. 

 Automatic generation of control program traces from 
model checker traces. We developed a set of rules 
translation allowing to parse the model checker traces and 
producing PLCOpen generic traces. The challenges here 
are to reduce the abstraction gap and the granularity gap 
between the two trace models. 

 Adaptation of PLCOpen generic traces into vendor-
specific traces. The platforms (manufacturers) allowing 
the editing of control-command programs (like Straton1) 
do not all comply with the PLCOpen standard. Our goal 
here consists in transforming the generic PLCOpen traces 
into vendor-specific traces that can be used by a specific 
platform. 

                                                
1Straton: http ://www.copalp.com/fr/ 

 Automatic simulation of the generated vendor-specific 
traces. The obtained vendor-specific traces are executed 
simultaneously with the control-command program to 
simulate the counterexample and highlight the program 
error (counterexample), initially returned by the model 
checker. 

1.1.3 Paper structure 
The next section presents the background and problem 
statement of the work carried out (Section 2). It introduces the 
concepts of Model driven engineering (MDE), control-
command programs, the Uppaal counterexamples and discusses 
the related work on counterexamples visualization. It ends by 
presenting the problem statement. Our approach for simulating 
counterexamples, returned by model checker, on control-
command programs and its implementation are described in 
Section 3. Section 4 discusses the validation results of our 
approach on an industrial case study. Finally, Section 5 
concludes and opens to future work. 

2 BACKGROUND & PROBLEM STATEMENT 

2.1 Model driven engineering (MDE) 
MDE is a design approach based on more abstract concerns than 
conventional programming (Combemale, 2008) in order to 
separate the designed solution from its implementation. In 
MDE, the most used concept is the model. 
The relationship between the system and the model is called 
representation. It states that a model is an abstraction of a real 
system, i.e. the model represents the real system. The model is 
specified from a metamodel (a syntax) that describes the 
language of expression (vocabulary) of the model (Combemale, 
2008). The model and its metamodel are linked by a compliance 
relationship meaning that a model must always conform to its 
metamodel. 
The MDE specification introduces also the concept of model 
transformation, which allows the generation from a source 
model, conforming to a source metamodel, to a target model 
conforming to a target metamodel. The main objective of model 
transformations is to enable the generation of platform-specific 
models from platform-independent (generic) models and thus 
promote interoperability (Bézivin & Gerbé, 2001). 

2.2 Visualization of counterexamples on control-command 
programs 

2.2.1 Control-command programs  
Control-command systems are used to control physical 
industrial process. The interaction of the control system with the 
physical process is carried out by observations through sensors 
and by actions performed via actuators. The sensors transform 
the physical measurements of the process into electrical signals 
that can be interpreted by the control-command system. 
Actuators (motors, transformers, etc.) transform the electrical 
commands of the control-command system in action orders that 
allow acting on the physical process by changing its state.  
Control-command programs are often deployed on 
programmable logic controllers (PLCs). They present a cyclical 
operational functioning (De Smet et al., 2000) over three steps. 
In the first step, data from the environment (sensors) are read 
and stored in internal variables. In the second step, the control-
command program is executed, and output data is calculated 
according to the control logic. In the third and final step, these 
outputs are written, i.e. sent to the actuators (De Smet et al., 
2000). 

http://www.copalp.com/fr/


 

 

The design of control-command programs consists of 
developing programs (or control logic) in one of the five 
standardized languages defined by IEC 61131-3 (Commission, 
2002): Ladder Diagram (LD), Instruction List (IL), Structured 
Text (ST), Sequential Function Chart (SFC) and Function Block 
Diagram (FBD). The Figure 1 shows an example of a LD 
program.  
However, the interoperability of these programs between 
different vendors has not been addressed by IEC 61131-3 
(Commission, 2002). To manage this interoperability problem, 
the PLCOpen committee proposed a common syntax for these 
programs. This syntax defines all the entities and elements of a 
control-command program in a platform-independent (generic) 
way. 

 
Figure 1. Ladder example program 

2.2.2 PLCOpen syntax 
According to PLCOpen, a control-command project (Figure 2) 
is composed of program types (Types in Figure 2) and 
configurations (Configurations in Figure 2). Program types are 
specified as an aggregation of several Program organization 
units (Pou in Figure 2). Pou is characterized by interfaces 
(variables) and a code part (body in Figure 2) that can be written 
in one of the five languages of IEC 61131-3, such as FDB and 
LD for example. 
On the other hand, the necessary conditions (Instance) for the 
execution of these programs are made up of configurations. 
Each configuration consists of a set of variables (accessVars, 
configVars, globalVars) and a set of resources. A resource is the 
unit providing processing, storage, and communication required 
for the execution of programs (PouInstance), i.e. resource 
allows program instances execution as tasks. A task describes 
the runtime properties for the execution of program instances 
and can be executed in a periodic or triggered manner. 
 

 
Figure 2. Control-command programs abstract syntax 

metamodel (excerpt taken from (PLCopen, 2009)) 

2.2.3 Straton IDE 
Straton is an Integrated Development Environment (IDE) for 
PLC control-command programs. It supports the five standard 
languages (CFS, FBD, LD, ST, IL) of IEC 61131-3 and offers a 
virtual machine for running control-command programs on a 
computer before transferring them to PLCs.  

2.2.4 Existing visualization approaches 
FBDVerifier (Jee et al., 2010) is a tool for visualizing 
counterexamples returned by the model checker SVM Cadence 
on Functional Block Diagrams (FBD) in the form of a 
chronological diagram. However, this type of visualization does 
not allow illustrating the causal links between the different 
blocks. The animation of the original model remains one of the 
best visualizations allowing the user to achieve different 
objectives (Loer & Harrison, 2006). This type of visualization 
was adopted in the MODCHK tool (Pakonen et al., 2018). In 
fact, this tool allows the visualization of the dynamic traces 
returned by the model checker NuSMV directly on the FBD. It 
provides parallel animation of the original FBD and the verified 
temporal properties to illustrate the source of the error.  
Despite the fact that these tools offer interesting solutions for 
dynamic counterexamples visualization, they remain specific to 
FBD programs and dependent on the used vendor-platforms.  
To be vendor-independent, the dynamic counterexamples 
visualization requires the execution operations of the IEC 
61131-3 programs and a generic trace model resulting from the 
execution of these programs. To our knowledge, the literature 
remains fairly poor and presents only a few specifications of the 
execution operations of some languages of IEC 61131-3 
standard (De Smet et al., 2000; Rossi & Schnoebelen, 2000). On 
the other hand, no trace model modeling the execution traces of 
control-command programs has been defined in the current state 
of the art. 

2.3 UPPAAL counterexamples visualization 

2.3.1 Uppaal Tool 
Uppaal is a model checker for real-time systems modeled as a 
network of communicating timed automata (example illustrated 
in Figure 2). Each automaton is a state machine that manages 
physical time through a set of clocks. The automaton evolves 
either by a delay of time or by the transition guard satisfaction 
driven by synchronization channels (Alur & Dill, 1990). 
The Uppaal model for the LD program of the Figure 1 is 
illustrated in Figure 3.  
 

 
Figure 3. LD automaton for 2-WMV (taken from (Mesli-

Kesraoui et al., 2016)) 

This automaton is composed of three main states 
(InputsReading, Execution, OutputsWriting) which describe the 
cyclical execution of programmable logic controllers. In the 
initial state, the controller is in the state InputsReading to read 
the inputs. Then, it reaches the Execution state where different 
outputs will be calculated. The controller then goes to the 



 

 

OutputsWriting state to write outputs to its environment. The 
cycle time is represented by a clock named cycle. 

2.3.2 Uppaal counterexample 
To check for example, that the CmdO and the CmdC variables 
cannot be at 1 simultaneously in the LD program, the following 
CTL property is used. 

A[] not CmdO ==1 and CmdC==1. 
The verification of this property on Uppaal generates a 

counterexample. This counterexample consists of states and 
transitions (Figure 4-a).  

A metamodel (Figure 4-b) of these traces was proposed in 
(Brandt, 2016). The Uppaal trace is composed of states (State) 
and transitions (Abstract-Transition), related to an automaton 
(TemplateInstance). The state is related to a set of locations and 
contains all concrete values (Valuation) of all variables 
(example: FdccO =1). Transitions can be a simple transition 
(EdgeTransition) or a delay transition. Each transition has a 
source and a target state. 

 

 
Figure 4. Uppaal trace : a) Uppaal trace example ; b) 
Uppaal trace metamodel (taken from (Brandt, 2016)) 

2.3.3 Existing UPPAAL counterexamples visualization 
approaches 

Uppaal counterexample visualization was studied in (Schivo et 
al., 2017) where an MDE-based approach for Uppaal 
counterexamples visualization on the MechatronicUML models 
was proposed. However, the application of this approach to 
control-command programs remains difficult because it requires 
the consideration of other parameters such as the cyclical 
execution of the control-command programs. Indeed, if the 
Uppaal model checker has been widely used for the verification 
of control-command programs in the literature (Da Silva et al., 
2008; De Vasconcelos Oliveira et al., 2010; Mokadem et al., 
2010; Soliman & Frey, 2011), the Uppaal counterexamples 
simulation on control-command programs has received little 
research attention. 

2.4 Problem statement 
The counterexamples returned by Uppaal are in the form of a 
series of states and transitions. The interpretation of these 
counterexamples requires simulating all the states and 
transitions on Uppaal and a great effort to identify the error 
mining. On the other hand, the projection of the error on the 
verified control-command program (presented in Figure 1) is 
not trivial, given the gap in granularity and abstraction between 
the Uppaal traces and the control-command programs. 

The aim of this work is to reduce this gap in order to facilitate 
the interpretation of the counterexamples directly on the 
control-command programs. The main questions are: 

Q1. Which data will be used when simulating the Uppaal 
counterexample on control-command programs? 

Q2. How to automatize the translation of the returned 
counterexamples into simulations on control-
command programs? 

Q3. How to deal with the problem of different targeting 
vendors platforms of control-command programs 
when simulating counterexamples? 

3 PROPOSED APPROACH 
In order to define the data necessary for the simulation (Q1) of 
the counterexamples directly on the control programs (target 
data), we carried out some simulations and tests on control-
command programs. During these tests, we realized that the 
simulation of control-command programs consists of 
manipulating the inputs of a program and comparing the results 
of its outputs with the expected ones. Therefore, our goal is to 
turn the model cherckers’ traces into a test case, which contains 
assignments of the program inputs and expectations of program 
outputs. 
To answer the second question (Q2), we have opted for the use 
of an MDE-based approach, as it provides a well-defined 
framework for automatic generation. However, implementing 
this approach required defining all the metamodels and 
transformation rules necessary for this transformation.  
On the other hand, to deal with the problem of different vendor 
platforms of the control-command programs (Q3), we introduce 
an intermediate step. This later transforms the traces returned by 
a model chechers into generic PLCOpen traces. The execution 
of these generic traces on a given platform requires transforming 
them into acceptable platform traces. This step is very 
important, because it allows us to transform the 
counterexamples into a generic model, independent of all 
vendor platforms, in order to increase the usability of our 
solution.  
 
In summary, our proposed approach is MDE-based and allows 
Uppaal counterexamples simulation directly on control-
command programs (Figure 5). It transforms the Uppaal traces 
into generic PLCOpen traces. These generic traces are then 
adapted to be directly simulated on a target-specific platform 
(Straton in our case). For this, we defined the generic trace 
metamodel for the control-command programs, based on 
PLCOpen syntax and the vendor-specific trace metamodel for 
Straton traces. 

 
Figure 5. Proposed approach for Uppaal traces simulation 

on control-command programs 



 

 

3.1 PLCOpen generic trace 
The definition of the generic trace metamodel of control-
command programs is based on the identification of the entities 
that change during the execution time of these programs.  
The execution of a control-command program starts with the 
running of its configuration. The start of the configuration (start 
operation in Figure 6) allows initializing all its variables and the 
execution of all its resources. Otherwise, the stop of 
configuration causes the stop of all its resources. Starting a 
resource causes the initialization of all its variables and enable 
all its tasks. Otherwise, if the resource is stopped, it disables all 
its tasks. Depending on the specification, the task can be 
performed either cyclically or in a trigged manner. In the two 
cases, the task starts executing at the starting time (startTime) 
and stops execution at the ending time (endTime). The task can 
be interrupted (interrupt operation) at any time (interruptTime) 
by another prior task. Once the prior task is finished, the 
interrupted task is resumed at the resumeTime. The task can 
have several executions. At each execution, the task reads 
inputs, executes the associated POU and writes outputs. Finally, 
executing the POU allows running the different programs (FBD, 
LD, SFC, ST, and IL) and updates values of variables according 
to the program logic. 
 

 
Figure 6. The execution operation of control-command 

programs. 

Figure 7 illustrates an example of a generic PLCOpen trace. In 
this example, the TracedTask was executed twice (two cycles). 
At the beginning (StartTime) of the first cycle, the input FdcC 
variable was at 1. At the end of this cycle (endTime), the output 
variable CmdO has the value of 0. In the second cycle, the 
FdcC remained at 1, the execution of this cycle allows the 
CmdO variable to be set to 1. 
 

 
Figure 7. Example of a generic trace model 

As explained above, PLCOpen trace results from the execution 
of different tasks and changes in the values of variables. At 
each time, each variable is characterized by its value and task 
is characterized by its starting, interrupting, resuming and 
ending time. To capture PLCOpen traces, we introduced the 
value property in the Variable class that stores the different 
concrete values of the variables during the execution. In the 
same way, the startTime, interruptTime, resumeTime, and the 
endTime properties in the Task class allow capturing 
respectively the task start, interruption, resume and end time.  
 
The proposed generic PLCOpen traces metamodel is 
illustrated in Figure 8. Trace is related to a resource and results 
from:  

1) the execution of different tasks (TracedTask in 
Figure 8) and;  

2) changes in the values of variables 
(TracedVariable).  

These two classes have an association (originalObject) with 
the original Task and Variable classes defined in the abstract 
syntax PLCOpen. The different valuations of each variable are 
stored in the attribute value of the class VarValue. Each 
TracedTask contains all its executions (Execution) or its 
cycles. The number property in the Task class indicates the 
execution number of the task. Each execution is characterized 
by 4-time values (Time) representing the startTime, the 
interruptTime, the resumeTime and the endTime. The 
association varValues allow storing different values of 
variable at each of the 4 task times.  
 

 
Figure 8. A generic PLCOpen trace metamodel  

3.2 Uppaal trace to PLCOpen trace  
We developed transformation rules to derive Uppaal traces into 
generic PLCOpen traces. This transformation takes both the 
Uppaal trace metamodel (Figure 4-b) and the PLCOpen abstract 
syntax metamodel (Figure 2) in inputs and produces a model 
that conforms to the generic PLCOpen traces metamodel 
(Figure 8). The Uppaal trace metamodel is used to deduce the 
trace error in the counterexample, on the other hand, the 
PLCOpen metamodel is used to identify different variable types 
(input/ output). We developed the following rules, illustrated in 
Figure 9. 

1. Trace2Trace. The Uppaal trace project is translated 
into a PLCOpen trace project. This later consists of a 
set of TracedVariable and TracedTask. 
TracedVariable are generated by the rule 
Variable2TracedVariable. TracedTask gathers all the 
cycle generated by the rule EdgeTransition2Execution. 

2. EdgeTransition2Execution. In the Uppaal automaton 
(Figure 3), all the states and transitions between the 
InputsReading state and the OutputsWriting state 



 

 

constitutes one program execution or cycle (Figure 8). 
For this, we translate from Uppaal trace each 
EdgeTransition starting by the InputsReading state to 
an Execution instance in the generic PLCOpen trace. 
Each Execution instance contains both the start and the 
end time (Time) instance, generated by the State2Time 
rule (example in Figure 9). 

3. State2Time. Each InputsReading and OutputsWriting 
states are translated to a Time Instance (example in 
Figure 9). The time attribute for these instance 
correspond to the cycle value in the state instance, as 
illustrated in Figure 9.  

4. Variable2TracedVariable. From the PLCOpen 
abstract syntax, all inputs and outputs variables are 
translated to a TracedVariable in PLCOpen generic 
trace. Input TracedVariables are related to startTime 
of a cycle and the outputs traced variables to the 
endTime.  

5. Valuation2VarValue. Each Valuation (Figure 4) from 
the Uppaal trace is transformed into VarValue and 
related to its TracedVariable, generated by the above 
rule (example CmdO variable in Figure 9). 

 
Figure 9. Tranlation rules illustration 

The obtained model is generic and therefore requires adaptation 
to a target vendor-platform for its execution and its simulation. 
In the following, we present the adaptation of this model to a 
specific trace model for the Straton platform. 

3.3 PLCOpen trace to Straton trace 
Several control-command programs IDE (like Straton, Tia 
portal, etc.) allow the exploitation and the animation of specific 
trace sequences directly on their editors. These specific traces 
are similar on the different IDEs. They essentially comprise 
simulation steps and in each step, assignments of variables or 
checks on the values of variables are carried out.  
For this work, we have used the Straton IDE. After studying 
examples of Straton trace (Figure 11), we proposed the 
metamodel presented in Figure 10. Straton trace consists of 
several steps (Step in Figure 10) that are of three types of 
expressions: assignment, evaluation, and wait (Figure 10). 
AssignmentExpression allows values to be assigned to variables 
i.e. variable initialization (lines 2, 3, 4 in Figure 11). 
EvaluationExpression is used to check variable values (lines 10-
15, in Figure 11). Finally, WaitExpression allows the test 

execution to be suspended for the specified time (lines 7 in 
Figure 11).  

 
Figure 10. Straton Trace metamodel 

To generate Straton traces from PLCOpen traces, we developed 
the following rules. 

1. Trace2Trace. The generic PLCOpen trace project is 
transformed into a Straton trace. This later gathers all 
the steps generated from Execution instances with the 
following rules. 

2. StartTime2AssignmentExpression. All the 
TracedVariables related to the startTime of a cycle 
(inputs), illustrated by the orange box in Figure 9, have 
been transformed into a set of assignment expressions 
(AssignmentExpression for Straton trace). For example 
FdcO:=0 in Figure 11. 

3. EndTime2EvaluationExpression. TracedVariables 
related to the endTime of a cycle (outputs), illustrated 
by the blue box in Figure 9, have been transformed into 
evaluations expression (EvaluationExpression for 
Straton trace). For example CmdO=1 in Figure 11. 

4. Time2WaitExpression. To manage the execution 
time of the cycle, a WaitExpression was also generated 
from the endTime-startTime of a time attribute. 

 

 
Figure 11. Sample Straton Trace Model 

Another translation module has been developed to translate the 
obtained Straton trace model from the XML notation to the 
textual notation to be executed directly by Straton. 

3.4 Automatic simulation of the generated trace on Straton 
Straton executes the generated trace as a test case. First, Straton 
executes assignment expressions in order to initialize control-
command variables (Figure 11). When executing the wait 
expression, the test is suspended for the time specified in the 



 

 

wait expression. After this, Straton compares evaluation 
expressions with the values obtained after the real execution of 
the control-command program. Then, it generates a report on 
each step (“Etat” column in Figure 11). 

4 CASE STUDY 

4.1 Presentation 
To evaluate our approach, we have validated it with a concrete 
case study: a 2-way motorized valve (2WMV) component. This 
physical component acts as a barrier. Indeed, when it is opened, 
it allows passing fluid. Nevertheless, if it is closed, fluid is 
blocked at its ends (Figure 12). 

 
Figure 12. Two-way motorized valve 

The control-command program is written in LD under the 
Straton software (Figure 1). The program runs in a cyclic 
manner. In each cycle, it reads the inputs (CtrlO, FdcO, FdcC) 
received respectively from the supervision interface, opens 
switch limit, and closes switch limit sensors (Figure 12). Then, 
it calculates the outputs. At the end of the cycle, it updates the 
outputs (CmdO, CmdC, StO, StC, StFMat, StFCmd). The 
Uppaal model for the LD program of the valve is illustrated in 
Figure 3. The detailed presentation of our case study can be 
found in (Mesli-Kesraoui et al., 2016). 

4.2 Evaluation method 
In order to evaluate the performance of our approach and its 
ability to simulate Uppaal counterexamples on control-
command programs, we applied it to a set of three (3) Uppaal 
counterexamples resulting from the formal verification of the 
properties of the case study. 
For this evaluation, two measures were considered. The first 
measure (M1) calculates the automatic generation time of the 
Straton traces from the Uppaal counterexamples. The purpose 
of this measure is to study the ability of our approach to 
transform different sizes of Uppaal traces. The second metric 
(M2) aims to calculate the number of simulation steps required 
to simulate the counterexample in the two tools: Uppaal and 
Straton. The number of simulation steps is an important 
complexity indication. Indeed, if the number of simulation steps 
is high, then understanding the counterexample is difficult. This 
metric measures the usefulness of our approach to facilitate the 
interpretation of counterexamples when verifying control-
command programs. 

4.3 Results & discussion 
The experiment was carried out on a computer with an I7 
microprocessor with a frequency equal to 2.6 GHz and 8 GB of 
memory. The results are presented in TABLE I.  
The results show that transformations take less than 0.3 seconds 
for a counterexample containing 54 states and 53 transitions 
(EC3). 
On the other hand, the results show that the number of 
simulation steps (M2) was divided by 24 between the Uppaal 
counterexample and Straton. On Uppaal, the user needs to run 
24 simulation steps to execute a single program cycle. 
Conversely, on the generated Straton trace, a cycle is carried out 
in one simulation step. These results show that our approach 
significantly reduces the simulation effort.  
 

 
TABLE I. Experimentation results 

Counterexample (CE) CE1 CE2 CE3 
Size state 15 32  54  

Transition 14 31 53 
Total 29 63 107 

Uppaal tarce PLCOpen generic trace 
(second) 

0.248  0.245 0.258 

PLCOpen generic trace  Straton trace 
(second) 

0.027 0.004 0.013 

Total time (M1) (second) 0.275 0.249 0.271 
Simulation step in Uppaal (M2) 27 55 107 
Simulation step in Straton (M2) 1 2 4 

5 CONCLUSION 
In this work, we presented a novel solution for the automatic 
simulation of Uppaal counterexamples on control-command 
programs (Back-annotation).  
In these works, we have proposed a PLCOpen generic trace 
metamodel to specify the execution traces of command 
programs in a generic way. Unlike the related work, the generic 
trace metamodel will promote its usability and nteroperability. 
Indeed, the generic PLCOpen traces metamodel can be used for 
the visualization of other model checkers’ counterexamples on 
other control-programs vendor-platforms. One have to 
transform the counterexamples of these model checkers into 
generic traces, and then to transform these generic traces into 
specific traces for the target platforms.  
Our proposed approach was evaluated on an industrial case 
study. Experimentation showed that the use of our approach 
enables traces to be generated in a very short time (less than 0.3 
seconds) and reduce simulation steps. This solution helps 
system designers to understand counterexamples and make it 
possible for them to use formal techniques in an industrial 
context.  
Further experiments with different user profiles (experts and 
non-experts in formal verification) will be required to assess the 
contribution of our solution in the interpretation of 
counterexamples. 
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